terça-feira, 27 de janeiro de 2015

Cometa elimina seu revestimento de poeira

A missão Rosetta da ESA está fornecendo uma visão única do ciclo de vida da superfície poeirenta do cometa 67P/Churyumov–Gerasimenko à medida que liberta o seu "casaco" de poeira acumulada ao longo dos últimos quatro anos.

cometa Churyumov–Gerasimenko

© ESA/Rosetta/NAVCAM (cometa 67P/Churyumov–Gerasimenko)

O mosaico acima é composto por quatro imagens tiradas em 18 de janeiro de 2015.

O COSIMA (COmetary Secondary Ion Mass Analyser) é um dos três instrumentos de análise de poeira da Rosetta. Começou a recolher, a fotografar e a medir a composição das partículas de poeira pouco depois da sonda chegar ao cometa em agosto de 2014.

O estudo cobre os meses de agosto a outubro, quando o cometa moveu-se aproximadamente desde os 535 milhões de quilômetros até aos 450 milhões quilômetros do Sol. A Rosetta passou a maior parte do seu tempo em órbita do cometa a distâncias de 30 km ou menos.

Os cientistas analisaram o modo como muitos dos grandes grãos de poeira se quebram quando recolhidos na placa do instrumento, normalmente a velocidades baixas de 1 a 10 m/s. Os grãos, que mediam originalmente pelo menos 0,5 mm, fragmentaram-se ou quebraram-se após o recolhimento.

O fato de se terem separado tão facilmente significa que as partes individuais não estavam bem ligadas entre si. Além do mais, se tivessem contido gelo, não se teriam quebrado. Em vez disso, o componente gelado teria evaporado do grão pouco depois de ter tocado na placa, deixando espaços vazios no material que restava.

Em comparação, se um grão de água gelada pura tivesse atingido o detector, então apenas seria observada uma mancha escura.

Descobriu-se que as partículas de poeira são ricas em sódio, partilhando as características das "partículas de poeira interplanetária". Estas podem ser encontradas em fluxos de meteoros provenientes de cometas, como a chuva anual das Perseidas, do Cometa 109P/Swift–Tuttle ou as Leônidas do 55P/Tempel–Tuttle.

"Descobrimos que as primeiras partículas de poeira, libertadas quando o cometa começou a tornar-se novamente ativo, são 'fofas'. Não contêm gelo, mas contêm muito sódio. Descobrimos a origem do material das partículas de poeira interplanetária," afirma a autora Rita Schulz da ESA.

Os cientistas acreditam que os grãos detectados estavam presos na superfície do cometa desde a sua última passagem pelo periélio, quando o fluxo de gás oposto à superfície havia diminuído e já não era suficiente para levantar os grãos de poeira da superfície.

Enquanto a poeira estava confinada à superfície, o gás continuava se evaporando a níveis muito baixos, oriundo de profundidades cada vez maiores durante os anos que o cometa viajou mais longe do Sol. Com efeito, o núcleo do cometa estava "secando" à superfície e logo abaixo dela.

grãos de poeira

© ESA/Rosetta/MPS (grãos de poeira)

Dois exemplos de grãos "fofos" de poeira recolhidos pelo instrumento COSIMA entre 25 e 31 de Outubro de 2014. Ambos foram recolhidos a uma distância de 10 a 20 km do núcleo do cometa. Cada grão é fotografado duas vezes sob duas condições diferentes de iluminação. O brilho está ajustado para entafizar as sombras, a fim de determinar a altura do grão de poeira.

"Nós pensamos que estes grãos 'fofos' recolhidos pela Rosetta são originários da camada poeirenta acumulada na superfície do cometa desde a sua última aproximação ao Sol," explica Martin Hilchenbach, pesquisador principal do COSIMA, no Instituto Max-Planck para pesquisa do Sistema Solar na Alemanha.

"Esta camada está sendo extraída à medida que a atividade cometária aumenta de novo. Vemos esta camada sendo removida, e esperamos que evolua para uma fase mais rica em gelo nos próximos meses."

O cometa completa uma órbita em redor do Sol a cada 6,5 anos, e está se movendo em direção à sua maior aproximação em agosto deste ano. Nesse momento, a Rosetta e o cometa estarão a 186 milhões de quilômetros do Sol, entre as órbitas da Terra e de Marte.

À medida que o cometa aquece, a saída de gases aumenta e os grãos que compõem as camadas secas da superfície são elevados para a atmosfera interior, ou cabeleira. Eventualmente, a energia solar incidente será suficientemente elevada para remover toda esta poeira velha, deixando material mais fresco exposto à superfície.

"Na verdade, grande parte do manto de poeira do cometa já deve ter sido perdido, e vamos em breve estudar grãos com propriedades muito diferentes," afirma Rita.

"As observações da poeira perto do núcleo do cometa são fundamentais para nos ajudar a associar o que acontece a escalas muito pequenas com o que vemos a escalas muito maiores, pois a poeira perde-se para a cabeleira e para a cauda do cometa," afirma Matt Taylor, cientista do projeto Rosetta da ESA.

"É realmente um caso de 'observar este espaço', enquanto continuamos assistindo em tempo real à evolução do cometa durante a sua aproximação do Sol e ao longo dos próximos meses."

Os resultados da primeira análise dos dados obtidos foram publicados ontem na revista Nature.

Fonte: ESA

sábado, 24 de janeiro de 2015

Cometa expele mais água no espaço

Tem aumentado de forma significante a quantidade de água que está sendo expelida do cometa 67P/Churyumov-Gerasimenko. O cometa que tem uma sonda em sua órbita, a Rosetta, e uma sonda em sua superfície, o Philae, desde Novembro de 2014.

cometa a 8 km

© ESA/Rosetta (cometa a 8 km)

Imagem da seção de um dos lóbulos do cometa  vista através da câmera de ângulo estreito da Rosetta de uma distância de cerca de 8 km até a superfície, em 14 de outubro de 2014. A resolução é de 15 centímetros/pixel. A imagem é destaque na capa da edição de 23 janeiro de 2015 da revista Science.

O cometa com 4 quilômetros de largura, estava lançando o equivalente a 1,2 litros de água no espaço a cada segundo no final de Agosto de 2014. As observações foram feitas pelo instrumento da NASA, conhecido como Microwave Instrument for Rosetta Orbiter (MIRO) a borda da sonda Rosetta da ESA. Os resultados científicos da equipe do MIRO foram lançados esta semana como parte da edição especial sobre a missão Rosetta da revista Science.

“Em observações feitas num período de três meses, de Junho a Agosto de 2014, a quantidade de água em vapor que o cometa estava lançando no espaço aumentou de um fator de dez”, disse Sam Gulkis, principal pesquisador do instrumento MIRO no Laboratório de Propulsão a Jato da NASA em Pasadena, na Califórnia, e principal autor do artigo que aparece na edição especial. “Termos estado perto do cometa por um período longo de tempo tem nos dado uma oportunidade única de ver como os cometas se transformam de corpos frios e congelados para objetos ativos expelindo gás e poeira à medida que eles chegam mais perto do Sol”.

O instrumento MIRO é um pequeno e leve espectrômetro que pode mapear a abundância, a temperatura e a velocidade do vapor de água cometário e outras moléculas que o núcleo lança. Ele pode também medir a temperatura numa região a dois centímetros abaixo da superfície do núcleo do cometa. Uma razão de medir a temperatura na subsuperfície é que os gases observados provavelmente têm origem da sublimação de gelo que ocorre abaixo da superfície. Combinando essa informação com o gás, o MIRO será capaz de estudar esse processo em detalhe.

Além disso, a equipe do MIRO relata que o cometa 67P/Churyumov-Gerasimenko expele mais gás de certos locais e em certos momentos do seu dia. O núcleo do cometa consiste de dois lóbulos de diferentes tamanhos conectados por uma região chamada de pescoço. Uma substancial porção do gás expelido que foi medido de Junho a Setembro de 2014, surgiu da região do pescoço e durante a tarde.

“Essa situação pode estar mudando agora que o cometa está ficando mais quente”, disse Gulkis. “Observações do MIRO precisam ser cuidadosamente analisadas para determinar que fatores além do calor do Sol são os responsáveis pela emissão de gás cometário”.

As observações são contínuas para se poder pesquisar sobre a variabilidade na taxa de produção e nas mudanças nas partes do núcleo que estão lançando gás à medida que a distância do cometa ao Sol também se altera. Essa informação ajudará os cientistas a entenderem como os cometas se desenvolvem à medida que eles orbitam e se movem em direção ao Sol e para longe dele. A taxa de produção de gás é também importante para a equipe de navegação da Rosetta controlar a sonda, já que o fluxo de gás pode alterar a trajetória da sonda.

mosaico do cometa

© ESA/Rosetta (mosaico do cometa)

No mosaico acima, com imagens obtidas em 16 de Janeiro pela sonda Rosetta, a cerca de 28,4 quilômetros de distância do centro do cometa, podemos ver uma área no lobo maior, que até há pouco tempo se mantinha permanentemente escondida nas sombras. Esta região nunca antes observada exibe uma série de escarpas afiadas e entalhes, que contrastam com o terreno plano de Imhotep, uma região relativamente extensa, visível no lado esquerdo do mosaico. Imhotep alberga no seu interior um conjunto de rochedos isolados, dos quais se destaca Quéops, um pedregulho com uma textura irregular, com cerca de 45 metros de diâmetro.

Em outro artigo foi revelado que a atmosfera do cometa, ou coma, é muito menos homogênea do que se esperava e que o fluxo de gás varia consideravelmente com o tempo.

“Se nós estivéssemos apenas visto um aumento constante dos gases já que estamos perto do cometa, não haveria dúvida sobre a heterogeneidade do núcleo”, disse Myrtha Hässig, uma cientista patrocinada pela NASA do Southwest Research Intitute em San Antonio. “Ao invés disso, nós observamos picos nas leituras de água, e poucas horas depois, um pico nas leituras de dióxido de carbono. Essa variação poderia ser um efeito da temperatura, ou um efeito sazonal, ou poderia apontar para a possibilidade das migrações realizadas pelo cometa no início do Sistema Solar”.

As medidas na coma, foram feitas pelo instrumento, Rosetta Orbiter Spectrometer for Ion and Neutral Analysis Double Focusing Mass Spectrometer (ROSINA DFMS). Medindo a composição da coma na posição da sonda, os dados do ROSINA indicam que o sinal de vapor de água é mais forte de maneira geral. Contudo, existem períodos quando a abundância de monóxido de carbono e de dióxido de carbono rivaliza com a quantidade de água.

“Analisados de modo integrado os resultados do MIRO e do ROSINA sugerem novos detalhes fascinantes para se aprender como os cometas trabalham”, disse Claudia Alexander, cientista de projeto da NASA.

A Rosetta está atualmente a cerca de 171 milhões de quilômetros da Terra e cerca de 148 milhões de quilômetros do Sol. Os cometas são verdadeiras cápsulas do tempo, contendo o material primitivo deixado para trás da época quando o Sol e os planetas se formaram. Estudando o gás, a poeira e a estrutura do núcleo do cometa  e o material orgânico associado com o cometa tanto remotamente tanto com observações próximas, a missão Rosetta deve se tornar chave para que se possa revelar a história e a evolução do nosso Sistema Solar, bem como responder perguntas sobre a origem da água na Terra e talvez até mesmo da vida. A Rosetta é a primeira missão na história a se aproximar de um cometa, escolta-lo durante a sua órbita ao redor do Sol, e enviar um módulo para sua superfície.

Fonte: NASA e ESA

quarta-feira, 21 de janeiro de 2015

A complexa cauda de íons do cometa Lovejoy

O que gera a estrutura na cauda do cometa Lovejoy?

cometa Lovejoy

© Velimir Popov e Emil Ivanov (cometa Lovejoy)

O cometa C/2014 Q2 (Lovejoy) que está atualmente tão brilhante que pode ser visto a olho nu, tem mostrado uma cauda de íons extremamente detalhada. A cauda de íons é feita de gás ionizado, ás energizado pela luz ultravioleta do Sol e empurrada para longe pelo vento solar. O vento solar é bastante estruturado e esculpido pelo campo magnético complexo e em constante mudança do Sol. O efeito da variação do vento solar, combinado com os diferentes jatos de gás emanando do núcleo do cometa é responsável pela complexa estrutura da cauda. Seguindo o vento, a estrutura na cauda do cometa Lovejoy pode ser vista se movendo na direção oposta à do Sol, mesmo alterando a sua aparência ondulatória com o decorrer do tempo. A coloração azulada da cauda de íons é dominada pela recombinação das moléculas de monóxido de carbono, enquanto que a coloração esverdeada da coma ao redor do núcleo do cometa é criada principalmente por uma pequena quantidade de moléculas diatômicas de carbono recombinadas. A imagem mostrada acima é na verdade um mosaico gerado por três imagens feitas a nove dias atrás no observatório IRIDA na Bulgária. O cometa Lovejoy fez sua maior aproximação da Terra a duas semanas atrás e no dia 30 de janeiro fará sua maior aproximação do Sol. Após isso, o cometa começa a se apagar enquanto retorna para o Sistema Solar externo, e retornará para as vizinhanças da Terra em cerca de 8.000 anos.

Fonte: NASA