terça-feira, 21 de julho de 2015

As caudas do cometa PanSTARRS

Depois de viajar à oeste no horizonte nos céus de verão do hemisfério norte o cometa PanSTARRS (C/2014 Q1) passou para os céus no inverno do hemisfério sul.

cometa C2014 Q1 PanSTARRS

© Kevin Parker (cometa C/2014 Q1 PanSTARRS)

O cometa C/2014 Q1 é um visitante do Sistema Solar interior descoberto em 16 agosto de 2014 pela prolífera pesquisa do consórcio PanSTARRS, localizado Haleakala no Havaí.

Esta imagem foi obtida pelo Home Observatory em Mackay, Queensland (Austrália), em 17 de julho de 2015, na 5ª magnitude e retratando suas caudas coloridas. O campo de visão se espalha por 1 grau nos céus.

Viajando velozmente através dos céus o cometa PanSTARRS havia se aproximado ao máximo do nosso planeta dois dias antes. Mesmo assim, as tênues estrelas da constelação de Câncer deixaram pequenos riscos nesta imagem telescópica alinhada mecanicamente com o movimento rápido do cometa.

A cauda iônica azulada do cometa PanSTARRS permanece alinhada justamente na direção oposta ao Sol, empurrada pelo vento solar. Dirigida pela pressão da luz solar, a mais difusa cauda amarelada de poeira é puxada para trás da trajetória do cometa, evidenciando sua direção orbital. Agora, apesar de sua magnitude estar subindo, este cometa é um bom alvo para binóculos nos céus do hemisfério sul nas próximas semanas, passando próximo de Vênus, Júpiter e da brilhante estrela Regulus.

localização do cometa C2014 Q1 PanSTARRS

© Cartes du Ciel (localização do cometa C2014 Q1 PanSTARRS)

O diagrama acima mostra a localização do cometa no hemisfério sul às 18:00 hs de hoje (horário de Brasília).

Fonte: NASA

terça-feira, 7 de julho de 2015

Cometa pode abrigar micro-organismos ativos

Dois cientistas planetários do Reino Unido, o especialista em cometas Prof. Chandra Wickramasinghe do Buckingham Center for Astrobiology e o Dr. Max Wallis da University of Cardiff, têm uma possível explicação para as estranhas propriedades do cometa 67P/Churyumov-Gerasimenko que está sendo estudado pela sonda Rosetta da ESA: são micro-organismos que moldam a atividade cometária.

mosaico do cometa 67P Churyumov-Gerasimenko

© ESA/Rosetta (mosaico do cometa 67P/Churyumov-Gerasimenko)

O cometa 67P/Churyumov-Gerasimenko é relativamente pequeno e pertence à família de cometas de Júpiter, com cerca de 4 km de diâmetro, movendo-se a uma velocidade de 135.000 km/h.

Ele circunda o Sol com um período de 6,45 anos, entre as órbitas de Júpiter e da Terra, que representa algo em torno de 800 milhões a 186 milhões de quilômetros do Sol.

“Apesar do cometa ter uma crosta muito escura, as imagens da Rosetta mostram alguns indicativos de uma morfologia congelada na subsuperfície. O cometa apresenta, áreas suaves e planas e crateras com o assoalho plano, ambas as características também foram observadas no cometa Tempel-1”, disseram os cientistas.

“A superfície do cometa 67P, é salpicada com grandes pedaços de rochas como o Cometa Hartley-2, enquanto que o terreno paralelo aparece como uma nova feição de gelo. As maiores áreas planas curvas ao redor de um dos lóbulos do cometa, e suas crateras se estendem por cerca de 150 metros de diâmetro e são formadas por corpos de água recongelados sobrepostos com detritos ricos em matéria orgânica com cerca de 10 cm”.

“Os sulcos paralelos referem-se a flexão do corpo formado por dois lobos assimétricos em rotação, que geram fraturas no corpo de gelo subjacente”.

“Todas essas características são consistentes com uma mistura de gelo e material orgânico que se consolida sob o calor do Sol durante a órbita do cometa, quando micro-organismos ativos podem ser mantidos”.

pedras, crateras e penhascos íngremes no cometa

© ESA/Rosetta (pedras, crateras e penhascos íngremes no cometa)

Vários aspectos da superfície do cometa, incluindo pedras, crateras e penhascos íngremes são claramente visíveis na imagem acima.

Nos seus modelos, os micro-organismos alienígenas provavelmente necessitam de corpos de água líquida para colonizar o cometa e poderiam habitar as fraturas no gelo e na neve. Organismos contendo sais anticongelantes são particularmente bons candidatos para se adaptarem nessas condições e alguns deles poderiam ser ativos em temperaturas abaixo de 40 graus Celsius.

Áreas iluminadas pelo Sol no cometa se aproximaram dessa temperatura em Setembro de 2014, quando ele estava a 500 milhões de quilômetros de distância do Sol e fracas emissões de gás eram evidentes. À medida que ele se aproxima do Sol, com o periélio acontecendo a 195 milhões de quilômetros, com a temperatura aumentando e a atividade gasosa se tornando mais ativa, também os micro-organismos poderiam ficar cada vez mais ativos.

“A emissão de gás já era evidente em Setembro a 3,3 UA, com a temperatura de pico na superfície entre 220 e 230 K, o que implica moléculas de água fracas e/ou misturas orgânicas não consolidadas. O aumento na taxa de emissão de gases à medida que o cometa 67P/Churyumov-Gerasimenko alcança o periélio a cerca de 1,3 UA revelarão a ativação de possíveis micro-organismos bem como a natureza e prevalência de gelo próximo da superfície”, dizem os cientistas.

“A Rosetta já está mostrando que o cometa não pode ser visto como um corpo inativo e profundamente congelado, mas que suporta sim processos geológicos e que poderia ser um lugar próspero para uma vida microscópica, mais hospitaleiro até do que as regiões no Ártico e na Antártica”.

“Se o módulo orbital Rosetta encontrar alguma evidência de vida no cometa, isso seria um tributo para marcar o centenário de nascimento de Sir Fred Hoyle, um dos pioneiros da Astrobiologia”.

Os cientistas apresentaram suas ideias numa conferência, realizada ontem no National Astronomy Meeting em Llandudno, em Wales, no Reino Unido.

Fonte: Royal Astronomical Society

sexta-feira, 3 de julho de 2015

Depressões no cometa 67P/C-G geram jatos

Um certo número dos jatos de poeira que emergem do cometa 67P/Churyumov-Gerasimenko podem ser traçados até poços ativos que provavelmente foram formados pelo colapso repentino da superfície, fornecendo um vislumbre do interior caótico e diverso do cometa.

cavidades no hemisfério norte do cometa

© ESA/Rosetta/MPS (cavidades no hemisfério norte do cometa)

A imagem acima mostra 18 cavidades que foram identificadas pela câmara OSIRIS da Rosetta no hemisfério norte do cometa 67P/Churyumov-Gerasimenko. As fossas têm o nome da região onde foram encontradas e algumas delas estão ativas. A imagem de contexto foi obtida no dia 3 de agosto de 2014 a uma distância de 285 km.
Em destaque nota-se a ampliação do buraco ativo denominado Seth_01, medindo cerca de 220 metros em diâmetro, que revela pequenos jatos emanados a partir das paredes interiores. Também mostra a estrutura interna e complexa do cometa. A imagem foi captada no dia 20 de outubro de 2014 a uma distância de 7 km da superfície do cometa.

A Rosetta esta analisando a atividade do Cometa 67P/Churyumov–Gerasimenko há mais de um ano, observando como o seu halo de poeira e gás cresce à medida que o cometa se aproxima do Sol.

A partir de uma distância de algumas centenas de quilômetros, a Rosetta observa um padrão intricado de jatos de poeira emitidos do núcleo à medida que fogem para o espaço. Mas agora, graças a imagens de alta resolução da câmara OSIRIS obtidas no ano passado a apenas 10 a 30 km do centro do cometa, pelo menos alguns destes jatos de poeira podem ser seguidos até locais específicos à superfície, a primeira observação do gênero.

Neste estudo foram identificados 18 poços quase circulares no hemisfério norte do cometa, alguns dos quais são fonte de atividade contínua.

Estas depressões têm entre algumas dezenas e centenas de metros em diâmetro e estendem-se até 210 metros abaixo da superfície para um solo coberto por poeira macia. Observou-se material saindo dos buracos mais ativos.

"Vemos jatos decorrentes das áreas fraturadas das paredes internas dos buracos. Estas fraturas contêm materiais voláteis presos sob a superfície que podem ser aquecidos mais facilmente e, posteriormente, escapam para o espaço," afirma Jean-Baptiste Vincent do Instituto Max Planck para a Investigação do Sistema Solar, autor principal do estudo.

Os cientistas que analisam as imagens pensam que os poços são formados quando o teto de uma cavidade à subsuperfície torna-se demasiado fino para suportar o seu próprio peso e acaba por colapsar, formando uma fossa. Isto expõe o interior fraturado do cometa, permitindo que o material, de outra forma escondido, sublime, continuando assim a corroer o buraco com o passar do tempo.

"Embora nós pensemos que o colapso que produz o buraco seja súbito, a cavidade no subsolo poroso pode crescer ao longo de períodos muito mais longos," afirma Sebastien Besse, do centro técnico ESTEC da ESA, na Holanda, coautor do estudo.

Os autores sugerem três cenários possíveis para a formação dos buracos.

O primeiro, é que já existiam desde a formação do cometa, como resultado de colisões a baixa velocidade entre os blocos primordiais de construção com dezenas e centenas de metros em tamanho. O desabamento do teto, acima de um vazio, pode ser desencadeado através do enfraquecimento da superfície, talvez por sublimação, agitação sísmica ou pelo impacto de pedregulhos expelidos de outros lugares do cometa.

Outra hipótese, é que se trata de sublimação direta de bolsas de gelos voláteis como dióxido e monóxido de carbono abaixo da superfície, aquecidos pelo calor da luz solar que penetra a camada superior de poeira.

Alternativamente, a sublimação pode ser impulsionada pela energia libertada por água gelada que muda de um estado físico amorfo para cristalino, sublimando gelos vizinhos mais voláteis como o dióxido de carbono e monóxido de carbono.

Caso seja qualquer dos dois últimos processos, então o fato de que as fossas não são vistas em todos os locais pode indicar uma distribuição desigual de gelos no interior do cometa.

"Independentemente dos processos que criam as cavidades, estas características mostram-nos que existem grandes diferenças estruturais e/ou composicionais dentro das primeiras centenas de metros da superfície do cometa e que as cavidades revelam materiais relativamente não transformados que, caso contrário, não seriam visíveis," explica Sebastien.

Os autores observam que as características internas reveladas nas paredes dos buracos variam significativamente de poço para poço, e incluem materiais fraturados, camadas horizontais e estrias verticais, e/ou estruturas globulares apelidadas de "goosebumps" (em português, arrepios).

"Nós pensamos ser capazes de usar as aberturas para caracterizar as idades relativas da superfície do cometa: quantas mais fossas existirem numa região, mais jovem e menos processada é a superfície," observa Jean-Baptiste.

"Isto é confirmado por observações recentes do hemisfério sul: este hemisfério está mais transformado porque recebe significativamente mais energia que o hemisfério norte e parece não apresentar estruturas semelhantes."

As cavidades ativas são particularmente íngremes, enquanto os buracos sem atividade observada são mais rasos e, em vez disso, podem indicar regiões ativas no passado. A equipe sugere que os buracos ativos são os mais jovens, enquanto os de meia-idade têm pedregulhos no chão que caíram dos lados. Entretanto, os mais antigos têm orlas deterioradas e estão recheados de poeira.

"Estamos analisando as nossas observações para ver se esta teoria é verdadeira e se esta 'série temporal' está, por exemplo, relacionada com a evolução térmica e interna do cometa," comenta Sebastien.

"Mas achamos que a maioria das depressões ativas já devem ter estado presentes durante várias órbitas em torno do Sol, caso contrário esperávamos ver uma série de surtos à medida que os seus colapsos eram provocados durante a órbita atual."

A Rosetta testemunhou um surto durante a sua aproximação ao cometa em abril de 2014, que se pensa ter gerado entre 1.000 e 100.000 kg de material. Os autores afirmam que a origem deste surto poderá ter sido o colapso de uma cavidade, mas apenas uma pequena fração do volume total de uma cavidade normal foi libertada nesse momento.

Por exemplo, considerando a densidade média medida no cometa, 470 kg por metro cúbico, a rápida evacuação de um típico buraco com 140 metros de largura e 140 metros de profundidade resultaria na libertação de aproximadamente um bilhão de kg de material, várias ordens de magnitude maiores do que o observado em abril de 2014.

"Nós estamos muito interessados em ver como estes poços ativos evoluem e, quem sabe, possamos testemunhar a formação de um novo poço," afirma Matt Taylor, cientista do projeto Rosetta da ESA.

"Ser capaz de observar mudanças no cometa, em particular ligando a atividade com características à superfície, é uma capacidade fundamental da Rosetta e nos ajudará a melhor compreender como o interior e a superfície do cometa têm evoluído desde a sua formação."

"E com a extensão da missão até setembro de 2016, podemos fazer o melhor trabalho possível em desvendar como os cometas funcionam."

O estudo foi publicado com o título “Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse” na revista Nature.

Fonte: ESA