sexta-feira, 30 de outubro de 2015

Detectado oxigênio molecular em cometa

A Rosetta da ESA fez a primeira deteção da liberação de oxigênio molecular de um cometa, uma observação surpreendente que sugere que foram incorporadas no cometa durante a sua formação.

cometa Churyumov–Gerasimenko

© ESA/Rosetta/NavCam (cometa 67P/Churyumov–Gerasimenko)

Esta fotografia do cometa 67P/Churyumov–Gerasimenko obtida pela câmara de navegação da Rosetta foi obtida no dia 18 de outubro de 2015 a uma distância de 312,7 km do centro do cometa. A imagem tem uma resolução de 26,6 m/pixel e abrange 27,3 km de comprimento.

A Rosetta estuda o cometa 67P/Churyumov–Gerasimenko há mais de um ano e detectou uma abundância de diferentes gases liberados pelo seu núcleo. Vapor de água, monóxido de carbono e dióxido de carbono são os mais abundantes, com uma rica variedade de espécies portadoras de nitrogênio, enxofre e carbono, e até mesmo "gases nobres".

O oxigênio é o terceiro elemento mais abundante do Universo, mas a versão molecular mais simples do gás (O2) tem sido surpreendentemente difícil de rastrear, mesmo até em nuvens de formação estelar, porque é altamente reativo e é facilmente quebrado para ligar-se com outros átomos e moléculas.

Por exemplo, os átomos de oxigênio combinam-se com os átomos de hidrogênio em grãos frios de poeira para formar água, ou uma separação livre do O2, graças à radiação ultravioleta, pode ser recombinado com uma molécula de O2 para formar ozônio (O3).

Apesar da sua detecção nas luas geladas de Júpiter e Saturno, o O2 tem estado desaparecido do inventário de espécies voláteis associadas com cometas.

"Nós não estávamos realmente à espera de detectar O2 no cometa, e com esta alta abundância, porque é tão quimicamente reativo, por isso foi uma surpresa," afirma Kathrin Altwegg da Universidade de Berna e pesquisadora principal do instrumento ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) da Rosetta.

"É também inesperada porque não existem muitos exemplos da detecção de O2 interestelar. E, portanto, mesmo que tivesse sido incorporado no cometa durante a sua formação, este não é facilmente explicado pelos modelos atuais de formação do Sistema Solar."

gráfico indicando a presença de oxigênio molecular

© ESA/A. Bieler (gráfico indicando a presença de oxigênio molecular)

O gráfico acima mostra as medições de alta resolução que permitiram com que o oxigênio molecular (O2) fosse distinguido de outras espécies como enxofre (S) e metano (CH3OH).

A equipe analisou mais de 3.000 amostras recolhidas em torno do cometa entre setembro de 2014 e março de 2015, a fim de identificar o O2. Eles determinaram uma abundância de 1 a 10% em relação ao H2O, com um valor médio de 3,80 ± 0,85%, uma ordem de magnitude superior ao previsto pelos modelos que descrevem a química das nuvens moleculares.

A quantidade de oxigênio molecular detectado mostra uma forte relação com a quantidade de água medida num dado momento, sugerindo que a sua origem no núcleo e o mecanismo de liberação estão ligados. Por outro lado, a quantidade de O2 visto está fracamente correlacionado com o monóxido de carbono e o nitrogênio molecular, mesmo que tenham uma volatilidade semelhante ao O2. Além disso, ainda não foi detectado ozônio.

Durante o período de estudo de seis meses, a Rosetta estava em direção ao Sol ao longo da sua trajetória, e orbitava tão perto quanto 10 a 30 km do núcleo do cometa. Apesar da distância cada vez menor ao Sol, a taxa O2/H2O manteve-se constante ao longo do tempo, e também não se alterou com a longitude ou latitude da Rosetta sobre o cometa.

Em mais detalhe, a relação O2/H2O foi diminuindo para abundâncias elevadas de H2O, uma observação que pode ser influenciada por água gelada à superfície produzida no processo diário de sublimação-condensação.

Foram exploradas as possibilidades para explicar a presença e a consistentemente alta abundância de O2 e a sua relação com a água, bem como a falta de ozônio, ao início considerando a fotólise e radiólise da água gelada durante várias escalas de tempo.

Na fotólise, os fótons quebram as ligações entre as moléculas, enquanto a radiólise envolve fótons mais energéticos ou elétrons e íons velozes que depositam energia no gelo e ionizam moléculas, um processo observado nas luas geladas do Sistema Solar exterior e nos anéis de Saturno. Qualquer um dos processos pode, em princípio, levar à formação e liberação de oxigênio molecular.

A radiólise deve ter operado durante os bilhões de anos que o cometa passou no Cinturão de Kuiper e levado à acumulação de O2 até poucos metros de profundidade. Mas estas camadas superiores têm que ter sido removidas desde que o cometa se deslocou para a sua órbita mais interior no Sistema Solar, excluindo-a como a fonte do O2 visto hoje.

Uma produção mais recente de O2, via radiólise e fotólise, pelas partículas do vento solar e fótons ultravioletas, só deve ter ocorrido nos primeiros micrômetros da superfície do cometa.

"Mas se esta era a fonte primária do O2, então seria de esperar que víssemos uma diminuição na proporção de O2/H2O pois esta camada foi removida durante o período de tempo de seis meses das nossas observações," afirma Andre Bieler da Universida de Michigan.

"A geração instantânea de O2 também parece improvável, já que deverá levar a proporções variáveis de O2 sob diferentes condições de iluminação. Ao invés, parece mais provável que o O2 primordial foi, de alguma forma, incorporado nos gelos do cometa durante a sua formação e está hoje sendo liberado com o vapor de água."

Num cenário, o O2 gasoso seria, em primeiro lugar, incorporado na água gelada durante o início da fase de nebulosa protossolar do nosso Sistema Solar. Os modelos químicos dos discos protoplanetários preveem que as altas abundâncias do O2 gasoso poderiam estar disponíveis na zona de formação do cometa, mas que seria necessário um rápido arrefecimento de temperaturas acima dos -173ºC até menos de -243ºC para formar água gelada com O2 capturado nos grãos de poeira. Os grãos teriam, então, de ser incorporados no cometa sem serem alterados quimicamente.

"Outras possibilidades incluem: a formação do Sistema Solar numa parte excepcionalmente quente de uma nuvem molecular, com temperaturas 10 a 20ºC acima dos cerca de -263ºC esperados normalmente para estas nuvens," comenta Ewine van Dishoeck do Observatório de Leiden, nos Países Baixos.

"Isto é ainda consistente com as estimativas para as condições de formação de cometas na nebulosa solar exterior, e também com as conclusões anteriores do cometa da Rosetta em relação à baixa abundância de N2."

Alternativamente, a radiólise dos grãos gelados de poeira pode ter ocorrido antes da acreção do cometa num corpo maior. Neste caso, o O2 permaneceria preso nos espaços vazios da água gelada nos grãos, enquanto o hidrogênio era difundido para fora, impedindo a reformação de O2 à água e resultando num aumento de estabilidade do nível de O2 no gelo sólido.

A incorporação de tais grãos de gelo dentro do núcleo pode explicar a forte correlação observada com o H2O no cometa de hoje.

"Independentemente do modo como foi produzido, o O2 foi também de alguma forma protegido durante o estágio de acreção do cometa: isto pode ter acontecido para evitar a destruição do O2 por outras reações químicas," acrescenta Kathrin.

"Este é um resultado intrigante para os estudos, tanto dentro como fora da comunidade cometária, com possíveis implicações para os nossos modelos da evolução do Sistema Solar," afirma Matt Taylor, cientista do projeto Rosetta da ESA.

Um artigo que descreve os resultados foi publicado na revista Nature.

Fonte: ESA

terça-feira, 27 de outubro de 2015

Descoberto etanol no cometa Lovejoy

De acordo com novas observações, o cometa Lovejoy fez jus ao seu nome graças à liberação de grandes quantidades de álcool, bem como um tipo de açúcar, para o espaço.

cometa Lovejoy

© Velimir Popov (cometa Lovejoy)

A descoberta marca a primeira vez que álcool etílico (ou etanol), o mesmo tipo presente nas bebidas alcoólicas, é encontrado num cometa. A descoberta reforça a evidência de que os cometas podem ter sido uma fonte de moléculas orgânicas complexas necessárias para o aparecimento da vida.

"Descobrimos que o cometa Lovejoy liberava álcool equivalente a pelo menos 500 garrafas de vinho por segundo durante o seu pico de atividade," afirma Nicolas Biver do Observatório de Paris, na França. Foram encontradas 21 moléculas orgânicas diferentes no gás do cometa, incluindo álcool etílico (C2H5OH) e glicoaldeído (CH2OHCHO).

Os cometas são os remanescentes gelados da formação do nosso Sistema Solar. São de interesse porque permaneceram relativamente intocados e, portanto, contêm pistas sobre a origem do Sistema Solar. A maioria orbita nas zonas frígidas bem longe do Sol. No entanto, ocasionalmente, uma perturbação gravitacional envia um cometa para mais perto do Sol, onde aquece e liberta gases, permitindo a determinação de sua composição.

O cometa Lovejoy (formalmente catalogado como C/2014 Q2) foi um dos cometas mais brilhantes e ativos desde o cometa Hale-Bopp em 1997. O Lovejoy passou pelo periélio no dia 30 de janeiro de 2015, quando liberava água a uma taxa de 20 toneladas por segundo. Nesta ocasião, o cometa era mais brilhante e mais ativo. Foi observado um brilho em micro-ondas oriundo do cometa usando o radiotelescópio de 30 metros em Pico Veleta nas montanhas da Sierra Nevada, na Espanha.

A luz solar energiza moléculas na atmosfera do cometa, fazendo com que brilhem em frequências de micro-ondas específicas (se as micro-ondas fossem visíveis, frequências diferentes seriam vistas como cores diferentes). Cada tipo de molécula brilha a frequências específicas, permitindo identificá-las com detectores no telescópio. O equipamento avançado foi capaz de analisar uma vasta gama de frequências simultaneamente e e possibilitou determinar os tipos e quantidades de muitas moléculas diferentes no cometa, apesar do curto período de observação.

Alguns pesquisadores pensam que os impactos de cometas na Terra antiga forneceram moléculas orgânicas que podem ter ajudado à origem da vida. A descoberta de moléculas orgânicas complexas no Lovejoy e outros cometas dá suporte a esta hipótese.

"O resultado promove definitivamente a ideia que os cometas transportam química muito complexa," afirma Stefanie Milam do Goddard Space Flight Center da NASA. "Durante o Último Grande Bombardeamento, há cerca de 3,8 bilhões de anos, quando muitos cometas e asteroides atingiam a Terra e esta estava formando os primeiros oceanos, a vida não começou com apenas moléculas simples como água, monóxido de carbono e azoto. Ao invés, a vida teve algo muito mais sofisticado ao nível molecular. Estamos encontrando moléculas com vários átomos de carbono. Podemos ver onde os açúcares começaram a formar-se, bem como compostos orgânicos mais complexos, tais como aminoácidos, os blocos de construção das proteínas, ou nucleobases, os blocos de construção do DNA. Estes podem formar-se muito mais facilmente do que começando com moléculas com apenas dois ou três átomos."

Em julho, a Agência Espacial Europeia (ESA) anunciou que o módulo de aterrissagem Philae, do orbitador Rosetta ao redor do cometa 67P/Churyumov-Gerasimenko, havia detectado 16 compostos orgânicos enquanto descia e saltava sobre a superfície do cometa. Alguns destes compostos desempenharam funções essenciais na fabricação de aminoácidos, nucleobases e açúcares a partir de moléculas mais simples.

Os cometas preservam material da nuvem antiga de gás e poeira que deu origem ao Sistema Solar. As supernovas e os ventos de estrelas gigantes vermelhas, perto do fim das suas vidas, produzem vastas nuvens de gás e poeira. Os sistemas solares nascem quando as ondas de choque dos ventos estelares e outras supernovas próximas comprimem e concentram uma nuvem de material estelar expelido até que grupos densos nessa nuvem começam a colapsar sob a sua própria gravidade, formando uma nova geração de estrelas e planetas.

Estas nuvens contêm inúmeros grãos de poeira. O dióxido de carbono, água e outros gases formam uma camada de gelo sobre a superfície destes grãos, assim como se forma geada nas janelas dos carros durante as noites frias e úmidas. A radiação no espaço alimenta as reações químicas nesta camada de gelo para produzir moléculas orgânicas complexas. Os grãos de gelo tornam-se incorporados nos cometas e asteroides, alguns dos quais impactam planetas jovens como a Terra primitiva, entregando moléculas orgânicas contidas dentro deles.

"O próximo passo é ver se o material orgânico encontrado nos cometas veio da nuvem primordial que formou o Sistema Solar ou se foi fabricado mais tarde, dentro do disco protoplanetário que rodeava o jovem Sol," afirma Dominique Bockelée-Morvan do Observatório de Paris.

Um artigo sobre a descoberta foi publicado na revista Science Advances.

Fonte: NASA

domingo, 4 de outubro de 2015

O polo sul do cometa da Rosetta

Usando o instrumento Microwave Instrument for Rosetta Orbiter (MIRO), os cientistas estão estudando a região polar sul do cometa 67P/Churyumov-Gerasimenko no final de sua longa estação de inverno.

região polar sul do cometa

© ESA/Rosetta (região polar sul do cometa)

A imagem acima mostra as regiões polares do sul do cometa 67P/Churyumov-Gerasimenko tiradas com a câmera científica OSIRIS da Rosetta em 29 de setembro de 2014, durante o longo inverno austral.

Os dados sugerem que essas regiões frias e escuras abrigam gelo nas suas primeiras dezenas de centímetros abaixo da superfície em quantidades muito maiores do que as encontradas em outras áreas do cometa.

Desde a sua chegada no cometa 67P/Churyumov-Gerasimenko, a Rosetta tem pesquisado a superfície e o ambiente desse corpo de forma curiosa. Mas por um longo período de tempo, uma porção do núcleo, as regiões frias e escuras ao redor do polo sul do cometa, permaneceram inacessíveis para quase todos os instrumentos a bordo da sonda.

Devido a uma combinação de sua forma com lóbulo duplo e a inclinação do seu eixo de rotação, o cometa da Rosetta tem um padrão sazonal muito peculiar durante a sua órbita de 6,5 anos. As estações estão distribuídas de maneira muito assimétrica entre os dois hemisférios, cada um deles compreende parte tanto dos lóbulos como do pescoço do cometa.

Na maior parte da órbita do cometa, o hemisfério norte experimenta um verão muito longo, durando cerca de 5,5 anos, e o hemisfério sul passa por um longo, frio e escuro inverno. Contudo, poucos meses antes do cometa passar pelo seu periélio, o ponto na sua órbita mais próximo do Sol, a situação muda e o hemisfério sul passa por um breve verão quente.

Quando a Rosetta chegou no cometa 67P/Churyumov-Gerasimenko em Agosto de 2014, ele ainda estava experimentando seu longo verão no hemisfério norte e as regiões no hemisfério sul recebiam muito pouca luz do Sol. Além disso, uma grande parte do hemisfério perto do polo sul do cometa estava numa noite polar e passava por uma escuridão total por quase cinco anos.

Sem iluminação direta do Sol, essas regiões não podiam ser imageadas com a câmera científica OSIRIS da Rosetta. Além disso, suas baixas temperaturas, entre 25 e 50 graus acima do zero absoluto, não permitiam observações com o Visible, InfraRed and Thermal Imaging Spectrometer (VIRTIS).

Nos primeiros meses depois da chegada da Rosetta no comenta, somente um instrumento na sonda poderia observar e caracterizar o polo sul frio do 67P/Churyumov-Gerasimenko, o Microwave Instrument for the Rosetta Orbiter (MIRO).

“Nós observamos o lado escuro do cometa com o MIRO em muitas ocasiões depois da chegada da Rosetta no 67P/Churyumov-Gerasimenko, e esses dados únicos estão nos dizendo algo muito intrigante sobre o material abaixo da superfície”, explica Mathieu Choukroun do Laboratório de Propulsão a Jato da NASA, e principal autor do estudo.

Observando as regiões polares sul do cometa, Choukroun e seus colegas encontraram diferenças significantes entre os dados coletados com os canais de comprimento de onda milimétrico e submilimétrico do MIRO. Essas diferenças podem apontar para a presença de grandes quantidades de gelo dentro das primeiras dezenas de centímetros abaixo da superfície nessas regiões.

“Surpreendentemente, as propriedades térmicas e elétricas ao redor do polo sul do cometa são bem diferentes daquelas encontradas em outros locais do núcleo. Parece que o material da superfície ou o material que localiza-se abaixo, em poucas dezenas de centímetros abaixo, é extremamente transparente para os comprimentos de onda de 0,5 e 1,6 mm do MIRO, e poderia consistir na sua maioria de gelo de água, ou gelo de dióxido de carbono”, adiciona ele.

A diferença entre a composição da superfície dessa parte do núcleo e do que se encontra em outros lugares pode originar do ciclo de estações peculiar do cometa. Uma das possíveis explicações é que a água e os outras gases que foram lançados durante o periélio anterior, quando o hemisfério sul foi a porção mais iluminada do núcleo, condensou novamente e precipitou na superfície depois que a estação mudou e o hemisfério sul entrou novamente no seu longo e frio inverno.

Esses são resultados preliminares, pois as análises dependem da forma detalhada do núcleo, e no momento das medidas essa forma não era conhecida com grande precisão.

“Nós planejamos revisitar os dados do MIRO usando uma versão atualizada do modelo digital da forma do cometa, para verificar esses resultados preliminares e refinar as interpretações das medidas”, adiciona Choukroun.

Os pesquisadores testarão esses e outros possíveis cenários usando dados que foram coletados nos meses subsequentes, levando o cometa ao periélio, que aconteceu no dia 13 de Agosto de 2015 e além.

Em Maio de 2015, as estações mudaram no 67P/Churyumov-Gerasimenko, e quente verão começou no hemisfério sul, que irá durar até o começo de 2016. Como as regiões polares escuras do sul começaram a receber mais luz do Sol, tem sido possível observá-las com outros instrumentos da Rosetta, e a combinação desses dados pode eventualmente revelar a origem dessa curiosa composição.

“Nos últimos meses, a Rosetta tem voado sobre a região polar sul do cometa em algumas ocasiões, começando a coletar dados dessa parte do cometa depois que o verão começou ali”, explica Matt Taylor, cientista de projeto da Rosetta na ESA.

“No começo do verão no hemisfério sul, nós pausamos as observações nessas regiões já que a trajetória da Rosetta estava focada no hemisfério norte devido às tentativas de comunicação com o módulo Philae. Contudo, perto do periélio nós fomos capazes de começar a observar o sul”.

“A Rosetta está atualmente numa excursão a cerca de 1.500 quilômetros do núcleo, para estudar o ambiente ao redor do cometa, mas em breve ela irá se aproximar do núcleo novamente, focando em órbitas completas para comparar os hemisférios norte e sul, bem como fazer passagens mais lentas no sul para maximizar nossas observações ali. Em adição a isso, à medida que a atividade diminuir no final do ano, nós esperamos ficar mais perto do núcleo e obter imagens de resolução mais alta da superfície”.

Mark Hofstadter, pesquisador da MIRO no Laboratório de Propulsão a Jato da NASA, descreveu os resultados como “um grande exemplo de como o processo científico se desenrola, à medida que a Rosetta está estudando a evolução desse cometa”.

“Nós esperamos que ao combinar os dados de todos os instrumentos nós seremos capazes de confirmar se o polo sul tem ou não uma composição diferente e se ele muda ou não sazonalmente”.

Um artigo sobre as observações foi aceito para publicação no Astronomy and Astrophysics.

Os resultados do instrumento MIRO foram apresentados esta semana no Congresso Europeu de Ciência Planetária, em Nantes, na França.

Fonte: ESA