sábado, 13 de maio de 2017

O cometa Johnson se aproxima

Com uma magnitude de +8,5, o cometa Johnson (C/2015 V2) já é suficientemente brilhante para juntar-se às fileiras dos cometas binoculares deste ano: NEOWISE (C/2016 U1), 45P/Honda-Mrkos-Pajdusakova, 2P/Encke, 41P/Tuttle-Giacobini-Kresak, Lovejoy (C/2017 E4) e PanSTARRS (C/2015 ER61).

cometa Johnson

© Rolando Ligustri/iTelescope (cometa Johnson)

À medida que a Lua se aproxima do leste e desvanece, os céus escuros voltam apartir de 12 de maio. O momento não poderia ser melhor, com o cometa Johnson possui uma órbita hiperbólica e está fazendo um mergulho íngreme através da constelação de Boötes (Boieiro), estando no alto do céu do sudeste ao anoitecer enquanto também está atingindo seu pico de brilho.

O cometa Johnson atualmente exibe os dois tipos clássicos de caudas: uma cauda de poeira larga e brilhante, e quase em ângulo reto para ela, uma cauda iônica estreita. A cauda de poeira, embora bastante difusa, é mais fácil de ser vista. O núcleo do cometa Johnson contém carbono diatômico (C2), uma substância que brilha com uma tonalidade verde quando exposta ao vento solar.

O cometa Johnson (C/2015 V2) foi descoberto por J. A. Johnson em 3 de novembro de 2015, em imagens CCD tiradas com o telescópio Schmidt de 0,68 m da Catalina Sky Survey. Ele passa mais perto da Terra em 5 de junho, a uma distância de cerca de 120 milhões de quilômetros e chega ao periélio uma semana depois, no dia 12 de junho.

De momento, os observadores do hemisfério norte têm a melhor visão, mas no início de junho, todos receberão um pedaço da cena. O cometa mergulha para o sul ao longo do início do inverno, atravessando Virgem em meados de junho e Centaurus até o final de julho.

No momento, este cometa não é visível a olho nu, mas conforme ele se aproxima da Terra para um encontro no início de junho, ele chegará na 6ª magnitude, o que o tornará um alvo fácil para telescópios pequenos e até mesmo binóculos.

A menos que um cometa novo e brilhante seja descoberto, o cometa Johnson será nosso último cometa brilhante binocular do ano.

Fonte: Sky & Telescope

segunda-feira, 1 de maio de 2017

A divisão da cauda iônica do cometa Lovejoy

O que aconteceu com o cometa Lovejoy?

cometa Lovejoy

© Fritz Helmut Hemmerich (cometa Lovejoy)

Na imagem composta acima, o cometa foi captado no início deste mês, após o brilho inesperado e ostentando uma longa e intrincada cauda de íons. Notavelmente, o efeito tipicamente complexo do vento e do campo magnético do Sol aqui causou que o meio da cauda de íons do cometa Lovejoy se assemelhasse à cabeça de uma agulha. O cometa C/2017 E4 (Lovejoy) foi descoberto apenas no mês passado pelo notável descobridor de cometas, Terry Lovejoy.

O cometa atingiu magnitude visual 7 no início deste mês, tornando-se um bom alvo para binóculos e câmeras de exposição de longa duração. O que aconteceu com o cometa C/2017 E4 (Lovejoy), uma vez que esta imagem foi tomada pode ser considerado ainda mais notável, o núcleo do cometa parecia estar se desintegrando e desaparecendo durante o periélio, sua maior aproximação do Sol ocorrida no último dia 23 de abril.

Fonte: NASA

quinta-feira, 2 de março de 2017

Novo cometa descoberto por brasileiros

O novo astro foi descoberto pela equipe do Observatório SONEAR (Southern Observatory for Near Earth Asteroids Research).

ilustração de um cometa

© Solarseven/Shutterstock (ilustração de um cometa)

O novo cometa, denominado C/2017 D2 (Barros), foi pela primeira vez observado em 23 de fevereiro de 2017 pelo astrônomo João Ribeiro Barros e oficialmente confirmado pelo Minor Planet Center (MCP), em 1 de março de 2017.

Este é o quinto cometa descoberto pela equipe do SONEAR, observatório privado situado na cidade de Oliveira, MG, e mantido com recursos próprios pelos astrônomos Cristovão Jacques, Eduardo Pimentel e João Ribeiro Barros, autor da descoberta recente.

O cometa C/2017 D2 (Barros) é um objeto de orbita parabólica, de período muito longo, com inclinação da orbita de 31,2 graus e que deve se aproximar ao máximo do Sol em 12 de julho de 2017, quando chegará a 2,5 UA (Unidades Astronômicas) da estrela, equivalente a cerca de 375 milhões de km.

órbita do cometa C2017 D2 (Barros)

© Orbit Viewer (órbita do cometa Barros)

Atualmente, o cometa Barros está entre as orbitas de Marte e Júpiter, a 482 milhões de km da Terra, na 18ª magnitude. Por ter uma órbita extremamente grande, após passar pelo Sol seguirá para o exterior do Sistema Solar.

Fonte: SONEAR

domingo, 26 de fevereiro de 2017

Cometa pode estar perto da desintegração

O fim pode estar perto de um cometa que tem quebrado em pedaços por mais de 20 anos.

cometa 73P Schwassmann-Wachmann

© Observatório Slooh (cometa 73P/Schwassmann-Wachmann)

Em 12 de fevereiro, os astrônomos que usavam o telescópio do observatório on-line Slooh no Chile foram os primeiros a ver o núcleo do cometa 73P/Schwassmann-Wachmann se dividir em duas partes. A imagem acima mostra este novo fragmento (rotulado "BT"), que é obviamente mais brilhante (em outburst) do que o corpo principal.

Isso levanta dúvidas sobre se o cometa pode sobreviver a outra viagem ao redor do Sol. O cometa efetuará o periélio, aproximação máxima do Sol em 16 março deste ano.

"Isso coloca o núcleo do cometa sob tremendo estresse das forças gravitacionais do Sol, e parece que isso pode ter sido responsável por dividir o núcleo em dois," disse Paul Cox, astrônomo do observatório Slooh.

O cometa foi descoberto pela primeira vez em 1930, e os observadores do céu viram sinais de que o cometa se separou no final de 1995, quebrando em três pedaços. Em seguida, outro grande evento ocorreu em 2006, quando o cometa fragmentou em mais de 30 pedaços à medida que se aproximava do Sol.

Os cometas são compostos de rocha, gelo e poeira que provavelmente se originam do Cinturão de Kuiper ou da Nuvem de Oort muito mais distante, que são zonas de objetos gelados na extremidade do Sistema Solar. O cometa 73P/Schwassmann-Wachmann pertence à classe de objetos jupiterianos, que têm um período orbital relativamente curto, em torno de 5,36 anos, e vêm do Cinturão de Kuiper.

O cometa enfrenta duas grandes ameaças à sua sobrevivência nos próximos anos. Se sobreviver a esta última viagem ao redor do Sol, ele voará a 50 milhões de quilômetros de Júpiter em 2025. Júpiter é conhecido em efetuar rupturas em cometas, sendo o mais famoso o cometa Shoemaker-Levy 9 que fragmentou em várias partes em 1992 e colidiu com o planeta em 1994.

Outra ameaça em curso para o cometa 73P/Schwassmann-Wachmann é o vento solar, que é o fluxo constante de partículas que emanam do Sol. A influência do Sol no cometa perturba as camadas superficiais deste corpo pequeno, criando a coma (atmosfera cometária) e a cauda que são comuns nos cometas.

"Parece que é apenas uma questão de tempo até que o cometa 73P/Schwassmann-Wachmann seja destruído, se desintegrando em detritos de poeira cósmica," acrescentou Cox.

Se o fim estiver próximo deste pedaço de rocha espacial primordial, tal fato será registrado, pois os membros do observatório Slooh e outros astrônomos ao redor do mundo estarão observando o cometa nas próximas semanas nos dois observatórios controlados remotamente pela organização no Chile e nas Ilhas Canárias.

Fonte: Tenagra Observatories

quarta-feira, 22 de fevereiro de 2017

Quase três caudas no cometa Encke

Como um cometa pode ter três caudas?

cometa Encke

© Fritz Helmut Hemmerich (cometa Encke)

Normalmente, um cometa tem duas caudas: uma cauda de íons de partículas carregadas emitidas pelo cometa e empurradas pelo vento solar, e uma cauda de poeira de pequenos detritos que orbita ao longo da trajetória do cometa. A cauda de iônica é apontada na direção diretamente oposta à do Sol.

Frequentemente um cometa parece ter apenas uma cauda porque a outra cauda não é facilmente visível da Terra. Na imagem incomum caracterizada acima, o cometa periódico 2P/Encke parece ter três caudas porque a cauda iônica aparentemente foi separada em duas apenas quando a imagem foi tomada.

O vento solar complexo é ocasionalmente turbulento e às vezes cria rupturas na cauda iônica. Em raras ocasiões, os eventos de desconexão iônica foram registrados. Uma imagem do cometa Encke tomada dois dias depois dá uma perspectiva talvez menos desconcertante.

Fonte: NASA

segunda-feira, 16 de janeiro de 2017

Existem vulcões em cometas?

Os vulcões podem não apenas existir em luas e planetas. Um cometa orbitando entre Marte e Júpiter parece ter seus próprios sinais de vulcanismo gelado, expelindo material congelado em vez de lava quente.

29P Schwassmann-Wachman

© NASA/Spitzer (29P/Schwassmann-Wachman)

Ao invés de um único monte estagnado, no entanto, as erupções vêm de um único local várias vezes antes de finalmente viajar para outro ponto na crosta gelada.

A rotação lenta do cometa permite que a crosta se enfraqueça ao longo do dia, enquanto o monóxido de carbono se acumula novamente na superfície durante a noite. Eventualmente, a pressão sob a superfície irrompe. Ao contrário dos jatos vistos em outros cometas, a "lava" fria atravessa de repente e explosivamente, sem sinais de acúmulo gradual.

"É um evento abrupto," diz Richard Miles, cientista cometário da British Astronomical Association, que apresentou os resultados na reunião da Divisão de Ciências Planetárias em Pasadena, Califórnia. Uma vez que a explosão é finalizada, desliga-se sem o lento declínio comum aos jatos. "É o que se esperaria do criovulcanismo."

O cometa periódico 29P/Schwassmann-Wachman é o mais ativo de todos os cometas conhecidos. Pouco depois de sua descoberta de 1927, o brilho do cometa começou a mudar dramaticamente. Enquanto muitos cometas se tornam mais brilhantes à medida que viajam mais perto do Sol, o cometa 29P/Schwassmann-Wachman orbita em um círculo quase perfeito, mantendo uma distância bastante consistente da estrela. Apesar de sua órbita estável, o cometa pode fazer mudanças notáveis ​​no brilho, tornando-se um favorito para os astrônomos amadores para ser observado.

Miles e seus colegas estudaram o cometa ao longo de mais de uma década, identificando 64 explosões do objeto minúsculo. O corpo gelado pode ter apenas três a quatro explosões por ano, embora alguns anos tenham lançado sete a oito erupções. Ao rastrear sua localização sobre a superfície do cometa, os cientistas descobriram que muitas das erupções vieram das mesmas regiões. Enquanto alguns reapareceram depois de um dia, outros demoraram tanto quanto 20 anos para reaparecer, com base em observações anteriores. Foi a sua aparição repetida que levou Miles e sua equipe a investigá-los como criovulcanismo. Ao contrário dos vulcões normais, que espalham lava derretida, os criovulcões entram em erupção de gases congelados que se movem muito parecidos com seus primos mais quentes.

Os criovulcões podem ser comuns nas luas geladas do Sistema Solar, incluindo as luas de Júpiter, Europa e Ganimedes, e lua de Saturno, Titã. Os planetas anões também podem hospedar as fontes frias, pois Plutão e Ceres têm características identificadas como possíveis criovulcões. O cometa 29P/Schwassmann-Wachman não tem recursos no solo que se assemelham a vulcões gelados. Em vez disso, Miles interpreta a atividade como potencialmente vulcânica.

"Se só aparece uma vez, não é um vulcão", diz Miles. A maioria dos locais estão ativos duas ou três vezes antes de ficar sem vapor.
A atividade estranha pode ser devido ao ciclo incomumente longo dia/noite do cometa. Ao contrário da maioria dos cometas, que giram em escalas horárias, cometa 29P/Schwassmann-Wachman gira apenas cerca de uma vez a cada 60 dias (horário terrestre). Durante a longa noite do cometa, o material pode se juntar em câmaras abaixo da superfície. Quando o cometa gira em seu dia longo, o gás expande, flexionando a superfície. Altas pressões podem ajudar a saída do gás através da superfície, explodindo para fora em um evento semelhante a um vulcão. Em vez de magma quente, o gás congelado sai do cometa.

O material jorrando se comporta como a cera de parafina, diz Miles. A cera suaviza muito antes de derreter, ou se torna líquida; o mesmo pode ser verdade para o material que sobe sob a superfície do cometa. O material semelhante à cera também pode desencadear outra atividade vulcânica. Graças ao seu enorme núcleo, que é cerca de 40 km de diâmetro é muito maior do que a maioria dos outros cometas, a maior parte do material volta à superfície. Se cair sobre outros poços de material subterrâneo, pode enfraquecer a crosta o suficiente para permitir que eles explodam como seus próprios vulcões.

O fluxo de material para o espaço resulta numa coma que deve ser diferente em torno de outros cometas. A coma em torno do cometa 67P/Churyumov-Gerasimenko, visitada pela missão Rosetta da Agência Espacial Europeia  (ESA) no ano passado, era muito mais fraca, provavelmente porque se formou muito menos violentamente.

Apesar de sua atividade incomum, o cometa 29P/Schwassmann-Wachman recebeu pouca atenção de observatórios terrestres e espaciais. Miles espera mudar isso enquanto continua as explosões incomuns em um esforço para entender os ciclos estranhos no corpo distante.

A pesquisa foi publicada em uma série de artigos da revista Icarus no início deste ano.

Fonte: Astronomy

segunda-feira, 2 de janeiro de 2017

O cometa periódico 45P retorna

Um velho cometa voltou ao Sistema Solar interior.

cometa 45P Honda-Mrkos-Pajdušáková

© Fritz Helmut Hemmerich (cometa 45P/Honda-Mrkos-Pajdušáková)

O cometa periódico 45P/Honda-Mrkos-Pajdušáková foi descoberto primeiramente em 5 de dezembro de 1948 por Minoru Honda, quando o astro estava na 9ª magnitude. Dois dias depois o mesmo cometa foi detectado por Antonín Mrkos e Ludmila Pajdušáková em placas fotográficas do Observatório Skalnate Pleso.

Este cometa tem um período curto, se aproximando da Terra a cada 5,25 anos, passando a maior parte do seu tempo fora, perto da órbita de Júpiter. O seu último periélio (maior aproximação do Sol) ocorreu no dia 31 de dezembro de 2016. Ele pode atingir um brilho máximo de magnitude +7 de janeiro a fevereiro de 2017, e passará a apenas 0,08 UA (12 milhões de quilômetros) da Terra em 11 de fevereiro de 2017. O cometa que passou mais próximo da Terra, cerca de  0,0151 UA (2,25 milhões de quilômetros), foi o D/1770 L1 Lexell em 01 de julho de 1770.

O cometa 45P/Honda-Mrkos-Pajdušáková tem seus elementos orbitais constantemente alterados em função de aproximações com o planeta Júpiter, bem como por efeitos não gravitacionais. Segundo cálculos de Kazuo Kinoshita, em 15 de agosto de 1935 o cometa passou a 0,08 UA de Júpiter provocando diminuição da sua distância periélica e diminuição do período orbital. Em 26 de março de 1986 o cometa passa a 0,11 UA de Júpiter, provocando nova diminuição da distância periélica, porém com aumento do período orbital.

O cometa é atualmente visível com binóculos sobre o horizonte ocidental logo após o pôr do Sol, não muito longe do planeta Vênus que é muito mais brilhante. O cometa foi captado na semana passada, visto na imagem acima, ostentando uma longa cauda de iônica com estrutura impressionante. Comet 45P passará relativamente perto da Terra no início do próximo mês.

Fonte: NASA