segunda-feira, 27 de junho de 2011

Spitzer registra imagem de cometa

O Telescópio Spitzer da NASA capturou uma imagem do cometa periódico Schwassmann-Wachmann I incomum que experimenta frequentes explosões que produzem abruptas mudanças no seu brilho.

cometa Schwassmann-Wachmann I

© NASA/Spitzer (cometa Schwassmann-Wachmann I)

Este cometa tem uma órbita praticamente circular pouco além da órbita de Júpiter, com um período de 14,9 anos. Acredita-se que as explosões nascem do aumento da pressão do gás interno à medida que o calor emitido pelo Sol vagorosamente evapora o dióxido de carbono e o monóxido de carbono congelado abaixo da crosta do núcleo do cometa. Quando a pressão interna excede a tensão da crosta sobreposta, uma ruptura ocorre, e uma explosão de fragmentos de gás e poeira é ejetada no espaço a uma velocidade de 200 metros por segundo.

Essa imagem feita do cometa no comprimento de onda de 24 mícron, foi obtida com o fotômetro de imagens multibanda. A imagem mostra emissões térmicas no infravermelho da coma empoeirada e da cauda do cometa. O núcleo do cometa tem aproximadamente 30 quilômetros de diâmetro e é muito pequeno para ser imageado pelo Spitzer. O tamanho micrométrico das partículas dos grãos de poeira na coma e na cauda geram uma corrente na direção oposta ao Sol. A poeira e o gás comprimi o núcleo do cometa que é formado do mesmo material primordial que formaram o Sol e os planetas a bilhões de anos atrás. As complexas moléculas ricas em carbono contidas nesse núcleo podem ter fornecido parte do material bruto de onde a vida se originou na Terra.

Acredita-se que o cometa Schwassmann-Wachmann I, seja membro de uma classe relativamente nova de objetos chamados de “Centaurus” de onde se conhecem 45 objetos. Esses objetos são pequenos corpos congelados com órbitas entre Júpiter e Netuno. Os Centaurus são objetos que escaparam recentemente do Cinturão de Kuiper, uma zona de pequenos corpos que orbitam em uma nuvem localizada numa parte distante do Sistema Solar.

Dois asteroides, o 1996 GM36 (a esquerda) e o 5238 Naozane (a direita) foram também registrados nessa imagem do cometa. Pelo fato deles estarem mais perto do Sol do que o cometa e terem uma velocidade orbital mais rápida, eles parecem se mover com relação ao cometa e as estrelas de fundo, produzindo uma aparência alongada. Os dados do Spitzer permitiram obter aferições térmicas que reduzem as incertezas das medidas feitas com a luz visível devido ao albedo (refletividade) para determinar o tamanho dos objetos. Com raios de 1,4 e 3,0 quilômetros esses são os menores asteroides do cinturão principal medidos por meio de detectores infravermelhos.

Fonte: NASA

quinta-feira, 2 de junho de 2011

Cometa descoberto por brasileiro

O brasileiro Paulo Holvorcem descobriu seu terceiro cometa, desta vez em parceria com Michael Schwartz, denominado C/2011 K1 Schwartz-Holvorcem, utilizando o Observatório Tenagra. As outras descobertas de Paulo Holvorcem foram os cometas C/2002 Y1 e C/2005 N1. O cometa C/2011 K1 passou pelo periélio em 19 de abril de 2011. Ele foi descoberto em 26 de maio de 2011 como um objeto de magnitude 19,5 na constelação de Ofiúco.

cometa Schwartz-Holvorcem 

© Luca Buzzi (cometa C/2011 K1 Schwartz-Holvorcem)

Esta imagem do cometa foi obtida em 29 de maio de 2011 por luca Buzzi no Observatório Schiaparelli.

A seção de cometas da REA (Rede de Astronomia Observacional) estima que por intermédio dos elementos orbitais provisórios, este cometa não deve ultrapassar a 18ª magnitude, ficando restrita sua observação visual através telescópios de grandes aberturas ou por meio de CCD.

Fonte: IAU Minor Planet Center e REA

quarta-feira, 4 de maio de 2011

Chuva de meteoros será visível a olho nu

Quem olhar para o céu na noite dos próximos dias poderá se deparar com um espetáculo diferente. O horizonte será cortado por uma chuva de meteoros do cometa Halley, visível a olho nu.

 cometa Halley

© NASA (cometa Halley)

As melhores condições de visibilidade estarão no hemisfério Sul. O melhor período para observá-la é entre a noite de quinta-feira (5/5) e a manhã de sexta (6/5). Dessa vez, quem estiver no Brasil, se a meteorologia ajudar, poderá obervar o fenômeno, porém o ideal são locais mais afastados da poluição luminosa das grandes cidades.

Os meteoros que passam perto da Terra são detritos do cometa Halley. Ao penetrar na atmosfera, estes meteoros passam a ser denominados meteoroides, deixando rastros incandescentes devido ao atrito. Em condições ideais, devem ser vistos entre 40 e 60 meteoroides por hora.

 núcleo do cometa Halley

© ESA/Giotto (núcleo do cometa Halley)

Um resquício antigo da formação do Sistema Solar, o cometa Halley completa uma volta ao redor do Sol a cada 76 anos. A última vez em que ele se aproximou da Terra foi em 1986. Seu retorno será em 2061.

Ainda assim, a trilha de poeira gelada que ele deixa pode ser vista duas vezes por ano, quando nosso planeta cruza o caminho dessas partículas. No mês de maio, essa chuva recebe o nome de Eta Aquarídea, porque o fenômeno parece começar perto dessa estrela da constelação de Aquário. Em outubro, ela se chama Orionídea. O radiante da Eta Aquarídea é mostrado no mapa celeste a seguir.

radiante no hemisfério sul da Eta Aquarídea

© Cosmo Novas (radiante no hemisfério sul da Eta Aquarídea)

Apesar de começarem na constelação de Aquário, não será preciso olhar diretamente para ela para ver os meteoroides caindo, pois eles podem aparecer em qualquer parte do céu.

Fonte: NASA e Cosmo Novas

quarta-feira, 27 de abril de 2011

Rota de um cometa

Aficcionados que costumam tirar fotos do céu, e observar fenômenos astronômicos interessantes, podem se tornar importantes colaboradores da ciência na era da Internet.

rota do cometa Holmes

© Dustin Lang e David Hogg (rota do cometa Holmes)

Dois astrônomos profissionais conseguiram traçar a órbita ainda desconhecida de um cometa, no último mês, graças a uma série de fotos amadoras disponíveis na web às quais eles tiveram acesso.

Um dos astrônomos é da Universidade de Princeton (EUA) e o outro do Instituto Max-Palnck de Astronomia em Heidelberg, na Alemanha. Em outubro de 2007, o cometa 17P/Holmes foi considerado pela Astronomia o corpo celeste mais brilhante do Sistema Solar, o que levou uma legião de curiosos a tentar fotografá-lo.

Usando um simples mecanismo de busca na Internet, eles encontraram 2.476 fotos do cometa Holmes. A partir de um site especializado em Astronomia, 1.299 delas foram consideradas fotos noturnas legítimas, nas quais se podia estudar. Calculando onde cada foto situou o cometa no tempo e no espaço, foi possível identificar a rota completa por onde passou o Holmes, e a Astronomia agora já conhece sua órbita.

A dupla de astrônomos parece animada com os resultados obtidos. Eles já planejam o próximo trabalho baseado exclusivamente em fotos amadoras da rede mundial. Será para definir o itinerário de outro cometa, o Hayakatuke, que aparece em 3.500 fotos diferentes apenas no site Flickr.

Fonte: Popular Science

sexta-feira, 8 de abril de 2011

Existência de água líquida em cometas

Foram encontrados indícios de água líquida no passado dos cometas, desbancando a ideia de que eles nunca experimentaram calor suficiente para derreter o gelo que forma a maior parte de sua massa.
cometa Holmes
© Vicent Peris (cometa Holmes)
Os pesquisadores, liderados por Eva Berger, da Universidade do Arizona, fizeram a descoberta analisando grãos de poeira do cometa Wild-2, trazidos de volta à Terra pela sonda Stardust.
Lançada em 1999, a sonda Stardust capturou minúsculas partículas lançadas da superfície do cometa em 2004, usando um material super leve, chamado aerogel, e as trouxe de volta à Terra em uma cápsula que aterrissou no estado de Utah, nos Estados Unidos, dois anos depois.
Na nossa amostra, foram encontrados minerais que se formam na presença de água líquida,  indicando que em algum ponto da sua história, o cometa conteve 'reservatórios' de água.
Os cometas são frequentemente chamados de "bolas de neve sujas" porque são formados principalmente de água congelada, e de fragmentos de rochas e gases congelados.
"Quando o gelo derreteu no Wild-2, a água quente resultante dissolveu minerais que estavam presentes naquele momento, precipitando os minerais na forma de sulfetos de ferro e cobre que observamos em nosso estudo", diz Dante Lauretta, coautor do estudo. "Os sulfetos se formaram entre 50 e 200 graus Celsius, muito mais quente do que as temperaturas abaixo de zero previstas para o interior de um cometa."
Ao contrário dos asteroides, pedaços extraterrestres formados por rochas e minerais, os cometas apresentam uma cauda formada por jatos de gás e vapor que o fluxo de partículas de alta energia vindas do Sol arranca de seus corpos congelados.
Mas os resultados da sonda Stardust também já haviam mostrado que há similaridades entre asteroides e cometas.
A descoberta dos sulfetos minerais de baixa temperatura é importante para a compreensão de como cometas se formaram, consequentemente fornece informações sobre a origem do Sistema Solar.
Além da evidência de água líquida, os ingredientes descobertos colocam um limite superior para as temperaturas que Wild-2 encontrou desde sua origem e ao longo de sua história.
O mineral que foi encontrado, a cubanita, é muito raro em amostras vindas do espaço. A cubanita é um sulfeto de ferro e cobre também é encontrado na Terra, em depósitos de minério expostos às águas subterrâneas aquecidas, e em um determinado tipo de meteorito.
Este mineral existe em duas formas, e a que encontramos só existe abaixo de 210 graus Celsius, significando que esses grãos não foram submetidos a temperaturas mais elevadas do que isso.
Fonte: Geochimica e Cosmochimica Acta

sexta-feira, 25 de fevereiro de 2011

Cometas podem ter pouco carbono

No passado, cientistas detectaram moléculas carregadas de carbono em cometas, incluindo alguns aminoácidos simples, que são considerados os blocos de construção para a vida.
cometa C2004 Q2 Machholz
© NOAO (cometa C/2004 Q2 - Machholz)
A presença dessas moléculas orgânicas em cometas, bem como o fato de que os cometas atingem planetas regularmente, sugeriu que eles poderiam ter “semeado” a Terra com os materiais à base de carbono necessários para formar a vida.
Agora, pesquisadores descobriram que os cometas podem conter muito menos carbono do que se pensava. Isso implica que o papel que eles desempenharam na entrega dos ingredientes para a vida na Terra pode ser diferente do que se acreditava.
Para saber mais sobre o carbono nos cometas, os cientistas analisaram imagens de campo do cometa C/2004 Q2 (Machholz), registradas por satélite. Os pesquisadores se concentraram na luz ultravioleta derramada por um “envelope” de poeira e gás ao redor do núcleo do cometa.
Os átomos de carbono dos cometas tornam-se ionizados, ou carregados eletricamente, quando são atingidos por bastante energia do Sol. Os pesquisadores estudaram a radiação emitida por átomos de carbono para determinar quanto tempo leva para a maioria do carbono em um cometa ficar ionizada.
Eles descobriram que este processo ocorre depois de apenas 7 a 16 dias; muito mais rapidamente do que se pensava. Isso sugere que pesquisas anteriores superestimaram a quantidade de carbono nos cometas por um fator de até dois.
Os cientistas já sabiam que a luz solar podia “carregar” o carbono. Esses novos resultados mostram como o vento solar, as rajadas de partículas eletricamente carregadas a partir do Sol, também influencia o carbono no espaço.
Isso tinha sido previsto anteriormente, mas até agora ninguém tinha quantitativamente colocado todas as peças juntas e feito uma medida que confirmasse a especulação.
Essas descobertas aumentam a discussão do quanto os cometas poderiam ter contribuído com a vida na Terra. Ao modificar o conhecimento dos níveis de carbono nos cometas, a descoberta pode também influenciar os modelos de como essas rochas espaciais são formadas.
O próximo passo é estudar a dinâmica orbital dos cometas, que pode dizer algo acerca de onde eles vieram e do que eles são feitos. Essas informações forneceram uma visão dos primórdios do Sistema Solar.
Fonte: LiveScience

terça-feira, 15 de fevereiro de 2011

Divulgada imagem do cometa Tempel 1

A sonda Stardust-NExT da NASA se encontrou com o cometa Tempel 1 ontem (14/02/2011).
cometa Tempel 1 visto pela sonda Stardust-NExT
© NASA (cometa Tempel 1 visto pela sonda Stardust-NExT)
O objetivo desse encontro é estudar pela primeira vez as mudanças na superfície do corpo celeste que circula entre as órbitas de Marte e Júpiter. Os dados desse novo empreendimento vão fornecer informações importantes sobre como se formam e evoluem a família de cometas de Júpiter.
A sonda continuará o trabalho de pesquisa sobre o cometa que começou em julho de 2005, quando a nave espacial Deep Impact lançou um projétil na superfície dele para estudar sua composição por meio do material desprendido na colisão. A imagem a seguir mostra duas crateras próximas do local do impacto focalizadas pelas sondas Deep Impact e Stardust-NExT.
crateras focalizadas pela Deep Impact e Stardust
© NASA (crateras focalizadas pela Deep Impact e Stardust)
A Stardust-NExT conta com sistemas capazes de capturar imagens da cratera criada pelo projétil, que deve fornecer uma grande quantidade de informações sobre a formação dos cometas.
local do impacto do projétil lançado pela Deep Impact
© NASA (local do impacto do projétil lançado pela Deep Impact)
O encontro ocorreu a 336 milhões de quilômetros da Terra, quando a sonda estava quase do lado oposto do Sistema Solar, e em determinado momento, ficou a apenas 180 km de distância do cometa. Durante o sobrevoo da Stardust-NExT estava previsto tirar 72 imagens, sendo cinco closes do núcleo do Tempel 1, mas surgiram fotos do cometa como se fosse somente um minúsculo ponto no espaço. As imagens foram armazenadas em um computador de bordo e enviadas à Terra para processamento, através de um transponder (transmissor/receptor de rádio), originalmente desenvolvido para a missão Cassini para Saturno, e um amplificador de estado sólido de 15 watts. As taxas de dados foram transmitidas em torno de 33 a 40 mil bits por segundo.
As imagens obtidas do cometa Tempel 1 pela sonda Stardust-NExT estão neste link.
Fonte: NASA

sábado, 5 de fevereiro de 2011

Um cometa brilhante promissor chegando?

O cometa C/2010 X1 Elenin foi  descoberto pelo russo Leonid Elenin em 10 de dezembro de 2010 no observatório russo-americano ISON-NM do Novo México (EUA).
cometa Elenin em 11 de Dezembro de 2010 
© Observatório Maidanak (cometa Elenin – 11/12/2010)
A imagem acima foi realizada no dia 11 de Dezembro de 2010 no Observatório de Maidanak no Cazaquistão confirmando a existência do cometa, que estava com magnitude 19. A quadruplicação de estrelas na fotografia é devido ao movimento do cometa durante a exposição.
Ainda é cedo para prever com exatidão sua trajetória. O cometa Elenin é o que possui a menor inclinação em relação ao plano da eclíptica em comparação aos cometas observáveis de órbitas alongadas (parabólicas ou hiperbólicas).
órbita do cometa Elenin no perigeu
© NASA (órbita do cometa Elenin no periélio)
Os seus elementos orbitais indicam que sua passagem periélica (aproximação máxima do cometa em ralação ao Sol) ocorrerá em 10 de Setembro de 2011, conforme o diagrama orbital gerado pelo JPL (Jet Propulsion Laboratory) da NASA. Nesta época, os parâmetros fotométricos mostram que o cometa terá magnitude 3,5.
órbita do cometa Elenin no perigeu
© NASA (órbita do cometa Elenin no perigeu)
O perigeu (aproximação máxima do cometa em relação à Terra) está previsto para o dia 16 de Outubro de 2011, havendo possibilidade da Terra passar pelos resíduos deixados pelo cometa ao longo do caminho.
O cometa Elenin poderá resultar num cometa brilhante como o Hyakutake (1996), o Hale-Bopp (1997) ou o McNaught (2007)?
Fonte: Sky & Telescope

quinta-feira, 3 de fevereiro de 2011

Novo outburst em cometa

O cometa 29P/Schwassmann-Wachmann entrou em erupção de novo e Richard Miles (British Astronomical Association), teve a sorte de observar este objeto ativo no Faulkes Telescope North no Havaí.
outburst no cometa 29P Schwassmann-Wachmann
© FTN (outburst no cometa 29P/Schwassmann-Wachmann)
O cometa 29P/Schwassmann-Wachmann está numa região relativamente fria do Sistema Solar, mais que 6 UA do Sol e ainda é um dos cometas periódicos mais ativos conhecidos. Normalmente os cometas tornam-se ativos quando se aproximam do periélio, onde o aquecimento solar é importante. Para este cometa as evidências sugerem que o monóxido de carbono é o principal motor de seus ímpetos. Em 20 de janeiro o astrônomo amador espanhol Faustino Garcia relatou uma explosão pequena no cometa. Quatro dias antes, ele tinha medido uma magnitude de 16,6, mas na manhã do dia 20 apresentava uma magnitude de 14,9, representando um aumento de um fator de 5 no brilho. A última vez que foi detectado um outburst foi em maio 2010, considerado mais energético.
Cerca de uma semana após a última explosão, foi possível ter uma imagem de fundo do cometa utilizando o telescópio Faulkes em Haleakala no Havaí. Acompanhando o cometa através de 21 frames num CCD (sensor para captação de imagens) durante um tempo de integração total de 65 minutos, uma alta relação sinal-ruído da imagem foi obtida permitindo procurar detalhes dentro da coma recém-formada. Observando a imagem é claro que a expansão da coma foi amplamente direcionada para um hemisfério. No processamento de gradiente da imagem usando o software IRIS foi revelado estruturas delicadas dentro da coma, que é ilustrada com cores falsas. 
Foi possível estudar também a região próxima ao núcleo do cometa, que está liberando material de sua estrutura. O cometa está bem posicionado para observação e amadores estão monitorando cuidadosamente o objeto na expectativa de uma explosão mais acentuada nas próximas semanas.
Fonte: Faulkes Telescope Project

quarta-feira, 2 de fevereiro de 2011

Mosaico de cometas

Lançado em dezembro de 2009 com o objetivo de mapear praticamente todo o céu no espectro infravermelho, o explorador WISE (Wide-field Infrared Survey Explorer) da NASA fez inúmeras descobertas de objetos celestes. Registrando o céu a cada 11 segundos, o satélite fez mais de 1,5 milhões de imagens e encontrou nada menos que 20 novos cometas vagando pelo Sistema Solar.
mosaico de cometas descobertos pelo WISE
© NASA (mosaico de cometas descobertos pelo WISE)
O mosaico apresenta os cometas descobertos pelo WISE, que são vistos da esquerda para a direita e de cima para baixo: 237P/LINEAR (2002 LN13), 233P/La Sagra (2009 WJ50), P/2009 WX51 (Catalina), P/2010 B2 (WISE), P/2010 D1 (WISE), P/2010 D2 (WISE), C/2010 D3 (WISE), C/2010 D4 (WISE), C/2010 DG56 (WISE), C/2010 E3 (WISE), C/2010 FB87 (WISE-Garradd), C/2010 G3 (WISE), C/2010 J4 (WISE), P/2010 K2 (WISE), C/2010 KW7 (WISE), 237P/LINEAR (2010 L2), C/2010 L4 (WISE), C/2010 L5 (WISE), P/2010 N1 (WISE) e P/2010 P4 (WISE).
A maior parte dos cometas retratados recebeu o sobrenome WISE com exceção de quatro objetos que já haviam sido descobertos anteriormente, mas até então eram considerados asteroides.
No entanto, as observações feitas pelo WISE mostraram que esses corpos não eram simples pedras ou rochas metálicas como no caso dos asteroides, mas sim bolas de gás e poeira congelada formadas ao redor de um núcleo, exatamente como os cometas.
Normalmente, as pessoas associam os cometas às populares imagens do Halley ou Hale-Bopp, com gigantescas caudas brilhantes cruzando o céu. Essa cauda se forma à medida que o objeto se aproxima do Sol, que aquece o gelo do cometa e o transforma em gás, que escapa para o espaço junto com partículas de poeira congelada. Essa mistura de gás e poeira cria uma névoa ao redor do núcleo, denominada coma, que pela ação do vento solar é soprada para bem longe formando uma enorme cauda de milhões de quilômetros.
O ruído de fundo visto nas cenas são flutuações aleatórias no espectro infravermelho, causadas principalmente pela poeira existente no próprio Sistema Solar. Devido ao tratamento das imagens, combinadas inúmeras vezes em um método chamado empilhamento, as estrelas são suprimidas. Isso permite gerar uma única cena de alta resolução com o objeto principal centralizado e livre de interferências.
As cores mostradas também não são reais e foram adicionadas para destacar os diversos comprimentos de onda registrados. Assim, a cor azul corresponde a 4,6 mícrons, o verde a 12 mícrons e o vermelho a 22 mícrons. A luz captada é diretamente proporcional à temperatura. Nas cenas, áreas frias aparecem em vermelho enquanto áreas mais quentes aparecem em azul.
Fonte:  NASA

quinta-feira, 27 de janeiro de 2011

Registrada as primeiras imagens do cometa Tempel 1

A sonda da NASA Stardust enviou suas primeiras imagens do cometa Tempel 1, o alvo do sobrevoo planejado para o dia 14 de Fevereiro de 2011.
primeiras imagens do cometa Tempel 1
© NASA/Stardust (primeiras imagens do cometa Tempel 1)
As imagens foram feitas em 18 e 19 de Janeiro de 2011 a uma distância de 26,3 milhões de quilômetros e a 25,4 milhões de quilômetros respectivamente. Em 14 de Fevereiro de 2011, a sonda Stardust passará a aproximadamente 200 quilômetros do núcleo do cometa. No Brasil ocorrerá as 01h:40 do dia 15 de Fevereiro de 2011.
“Essa é a primeira de muitas imagens que faremos do cometa Tempel 1”, disse Joe Veverka, pesquisador principal da missão da NASA Stardust-NExT da Cornell University, em Ithaca, N.Y.
Encontrar algo tão pequeno e rápido como um cometa na vastidão do espaço sempre é um desafio.
A imagem composta é uma combinação de algumas imagens feitas pela câmera de navegação da Stardust. Futuras imagens serão usadas para ajudar os navegadores a refinarem a trajetória da Stardust, ou o voo de passagem, isso acontecerá quando a distância entre a sonda e o cometa for de aproximadamente 950.000 quilômetros. Na noite do encontro, a câmera de navegação será usada para adquirir 72 imagens de alta resolução das feições que constituem a superfície do cometa. Os cientistas da missão Stardust-NExT usarão essas imagens para ver como a superfície do cometa Tempel 1 tem mudado nos últimos cinco anos e meio. Isso porque o Tempel 1 já foi visitado em Julho de 2005 por outra sonda da NASA, a missão Deep Impact.
Lançada em 7 de Fevereiro de 1999, a Stardust tornou-se a primeira sonda na história a coletar amostras de um cometa, o Wild 2 e enviá-las a Terra para estudo. Enquanto uma cápsula trazia as amostras para a Terra com paraquedas em Janeiro de 2006, os controladores da missão fizeram o esforço para colocar a sonda no caminho do cometa o que permitiria a NASA ter a oportunidade para reutilizar os já provados sistemas de voo. Em Janeiro de 2007, a NASA rebatizou a missão, chamando-a de Stardust-NExT (New Exploration Tempel), e a equipe da Stardust começou uma jornada de quatro anos e meio até que a sonda encontre o Tempel 1.
A sonda Stardust-NExT também medirá a composição, o tamanho da distribuição e o fluxo de poeira emitida na coma, e fornecerá novas informações importantes sobre como os cometas da família Júpiter se desenvolvem e como eles se formaram há 4,6 bilhões de anos.
Fonte:  NASA

quarta-feira, 19 de janeiro de 2011

Enxame de cometas

No período de 13 a 22 de dezembro de 2010 o SOHO (Solar and Heliospheric Observatory) descobriu que 25 cometas mergulharam no Sol. A imagem abaixo mostra o momento exato da colisão de um cometa com o Sol no dia 20 de dezembro de 2010.
cometa sendo capturado pelo Sol
© SOHO (cometa sendo capturado pelo Sol)
O SOHO constantemente observa cometas se desintegrando na superfície solar, mas vários cometas num curto período de tempo é um fato sem precedentes.
O coronógrafo da sonda produz um eclipse artificial possibilitando identificar este cometas considerados pequenos da classe de 10 m.
Será que algum cometa maior está por vir?
cometa Ikeya Seki
© Roger Lynds (cometa Ikeya-Seki)
Por exemplo, em 1965 o cometa Ikeya-Seki, descoberto por dois astrônomos amadores japoneses que lhe deram o nome: Kaoru Ikeya e Tsutomu Seki, cujo núcleo era de 5 Km de diâmetro. O cometa aproximou-se do Sol em 21 de outubro de 1965, quando penetrou na incandescente coroa solar, passando somente a 465.000 km da superfície deste astro.
Naquela ocasião, o núcleo cometário já apresentava uma esplendida coma e uma espetacular cauda, nas quais a análise espectroscópica tinha determinado os componentes voláteis típicos dos cometas, atingindo as temperaturas de fusão dos metais; a análise também revelou as bandas do ferro e do níquel.
Segundo o saudoso astrônomo americano Brian G. Marsden, que reconstruiu a passagem do Ikeya-Seki, mencionou que este cometa veio de um longínquo ascendente que em 1106 se aproximou tanto do Sol que teve seu núcleo partido em dois. Um destes dois fragmentos teria dado vida ao Grande Cometa de setembro de 1882; também este passou muito perto do Sol e posteriormente se dividiu em duas partes. O segundo fragmento teria originado precisamente o Ikeya-Seki, dividindo-se em duas partes. Destas, uma deverá voltar, segundo seus cálculos, após uma longa viagem ao redor do Sol, no ano de 2.843; sendo que a outra parte retornará em 3020.
Os cometas que, como o Ikeya-Seki, passam tão próximo do Sol e se dividem em duas ou mais partes, formam uma família que, em homenagem ao astrônomo Heinrich Kreutz que os classificou, recebem o nome de grupo de Kreutz. Do mesmo modo tomam parte deste grupo os cometas que passam tão perto do Sol que são completamente destruídos ou que caem para dentro dele. O primeiro acontecimento deste tipo foi observado e documentado pela primmeira vez em 30 de agosto de 1979 por um satélite militar americano, o P 78-1, que graças a um coronógrafo que levava a bordo, registrou um cometa que caiu no Sol.
Os pesquisadores Zdenek Sekanina e Paul Chodas do JPL (Jet Propulsion Laboratory) da NASA modelaram a fragmentação do progenitor de Kreutz, e em 2007 num artigo do Astrophysical  Journal foi sugerido que pedaços maiores estavam a caminho.
Fique de olho no SOHO!
Fonte:  NASA e ESA