segunda-feira, 16 de janeiro de 2017

Existem vulcões em cometas?

Os vulcões podem não apenas existir em luas e planetas. Um cometa orbitando entre Marte e Júpiter parece ter seus próprios sinais de vulcanismo gelado, expelindo material congelado em vez de lava quente.

29P Schwassmann-Wachman

© NASA/Spitzer (29P/Schwassmann-Wachman)

Ao invés de um único monte estagnado, no entanto, as erupções vêm de um único local várias vezes antes de finalmente viajar para outro ponto na crosta gelada.

A rotação lenta do cometa permite que a crosta se enfraqueça ao longo do dia, enquanto o monóxido de carbono se acumula novamente na superfície durante a noite. Eventualmente, a pressão sob a superfície irrompe. Ao contrário dos jatos vistos em outros cometas, a "lava" fria atravessa de repente e explosivamente, sem sinais de acúmulo gradual.

"É um evento abrupto," diz Richard Miles, cientista cometário da British Astronomical Association, que apresentou os resultados na reunião da Divisão de Ciências Planetárias em Pasadena, Califórnia. Uma vez que a explosão é finalizada, desliga-se sem o lento declínio comum aos jatos. "É o que se esperaria do criovulcanismo."

O cometa periódico 29P/Schwassmann-Wachman é o mais ativo de todos os cometas conhecidos. Pouco depois de sua descoberta de 1927, o brilho do cometa começou a mudar dramaticamente. Enquanto muitos cometas se tornam mais brilhantes à medida que viajam mais perto do Sol, o cometa 29P/Schwassmann-Wachman orbita em um círculo quase perfeito, mantendo uma distância bastante consistente da estrela. Apesar de sua órbita estável, o cometa pode fazer mudanças notáveis ​​no brilho, tornando-se um favorito para os astrônomos amadores para ser observado.

Miles e seus colegas estudaram o cometa ao longo de mais de uma década, identificando 64 explosões do objeto minúsculo. O corpo gelado pode ter apenas três a quatro explosões por ano, embora alguns anos tenham lançado sete a oito erupções. Ao rastrear sua localização sobre a superfície do cometa, os cientistas descobriram que muitas das erupções vieram das mesmas regiões. Enquanto alguns reapareceram depois de um dia, outros demoraram tanto quanto 20 anos para reaparecer, com base em observações anteriores. Foi a sua aparição repetida que levou Miles e sua equipe a investigá-los como criovulcanismo. Ao contrário dos vulcões normais, que espalham lava derretida, os criovulcões entram em erupção de gases congelados que se movem muito parecidos com seus primos mais quentes.

Os criovulcões podem ser comuns nas luas geladas do Sistema Solar, incluindo as luas de Júpiter, Europa e Ganimedes, e lua de Saturno, Titã. Os planetas anões também podem hospedar as fontes frias, pois Plutão e Ceres têm características identificadas como possíveis criovulcões. O cometa 29P/Schwassmann-Wachman não tem recursos no solo que se assemelham a vulcões gelados. Em vez disso, Miles interpreta a atividade como potencialmente vulcânica.

"Se só aparece uma vez, não é um vulcão", diz Miles. A maioria dos locais estão ativos duas ou três vezes antes de ficar sem vapor.
A atividade estranha pode ser devido ao ciclo incomumente longo dia/noite do cometa. Ao contrário da maioria dos cometas, que giram em escalas horárias, cometa 29P/Schwassmann-Wachman gira apenas cerca de uma vez a cada 60 dias (horário terrestre). Durante a longa noite do cometa, o material pode se juntar em câmaras abaixo da superfície. Quando o cometa gira em seu dia longo, o gás expande, flexionando a superfície. Altas pressões podem ajudar a saída do gás através da superfície, explodindo para fora em um evento semelhante a um vulcão. Em vez de magma quente, o gás congelado sai do cometa.

O material jorrando se comporta como a cera de parafina, diz Miles. A cera suaviza muito antes de derreter, ou se torna líquida; o mesmo pode ser verdade para o material que sobe sob a superfície do cometa. O material semelhante à cera também pode desencadear outra atividade vulcânica. Graças ao seu enorme núcleo, que é cerca de 40 km de diâmetro é muito maior do que a maioria dos outros cometas, a maior parte do material volta à superfície. Se cair sobre outros poços de material subterrâneo, pode enfraquecer a crosta o suficiente para permitir que eles explodam como seus próprios vulcões.

O fluxo de material para o espaço resulta numa coma que deve ser diferente em torno de outros cometas. A coma em torno do cometa 67P/Churyumov-Gerasimenko, visitada pela missão Rosetta da Agência Espacial Europeia  (ESA) no ano passado, era muito mais fraca, provavelmente porque se formou muito menos violentamente.

Apesar de sua atividade incomum, o cometa 29P/Schwassmann-Wachman recebeu pouca atenção de observatórios terrestres e espaciais. Miles espera mudar isso enquanto continua as explosões incomuns em um esforço para entender os ciclos estranhos no corpo distante.

A pesquisa foi publicada em uma série de artigos da revista Icarus no início deste ano.

Fonte: Astronomy

segunda-feira, 2 de janeiro de 2017

O cometa periódico 45P retorna

Um velho cometa voltou ao Sistema Solar interior.

cometa 45P Honda-Mrkos-Pajdušáková

© Fritz Helmut Hemmerich (cometa 45P/Honda-Mrkos-Pajdušáková)

O cometa periódico 45P/Honda-Mrkos-Pajdušáková foi descoberto primeiramente em 5 de dezembro de 1948 por Minoru Honda, quando o astro estava na 9ª magnitude. Dois dias depois o mesmo cometa foi detectado por Antonín Mrkos e Ludmila Pajdušáková em placas fotográficas do Observatório Skalnate Pleso.

Este cometa tem um período curto, se aproximando da Terra a cada 5,25 anos, passando a maior parte do seu tempo fora, perto da órbita de Júpiter. O seu último periélio (maior aproximação do Sol) ocorreu no dia 31 de dezembro de 2016. Ele pode atingir um brilho máximo de magnitude +7 de janeiro a fevereiro de 2017, e passará a apenas 0,08 UA (12 milhões de quilômetros) da Terra em 11 de fevereiro de 2017. O cometa que passou mais próximo da Terra, cerca de  0,0151 UA (2,25 milhões de quilômetros), foi o D/1770 L1 Lexell em 01 de julho de 1770.

O cometa 45P/Honda-Mrkos-Pajdušáková tem seus elementos orbitais constantemente alterados em função de aproximações com o planeta Júpiter, bem como por efeitos não gravitacionais. Segundo cálculos de Kazuo Kinoshita, em 15 de agosto de 1935 o cometa passou a 0,08 UA de Júpiter provocando diminuição da sua distância periélica e diminuição do período orbital. Em 26 de março de 1986 o cometa passa a 0,11 UA de Júpiter, provocando nova diminuição da distância periélica, porém com aumento do período orbital.

O cometa é atualmente visível com binóculos sobre o horizonte ocidental logo após o pôr do Sol, não muito longe do planeta Vênus que é muito mais brilhante. O cometa foi captado na semana passada, visto na imagem acima, ostentando uma longa cauda de iônica com estrutura impressionante. Comet 45P passará relativamente perto da Terra no início do próximo mês.

Fonte: NASA