sábado, 19 de novembro de 2022

Dois cometas promissores

O comportamento dos cometas podem ser surpreendentes.

© Eduard Demencik (cometa C/2022 E3 ZTF)

Os cometas podem se desintegrar ou sofrer outburst (explosão). A mudança constante tornam estes viajantes do Sistema Solar alvos irresistíveis para amadores observá-los. "Olhe profundamente para a natureza, e você entenderá tudo melhor," disse Albert Einstein.

Existem dois cometas de 10ª magnitude agora visíveis no céu noturno, ambos descobertos pelo Zwicky Transient Facility (ZTF) e levam seus nomes: cometa ZTF (C/2020 V2) e cometa ZTF (C/2022 E3). A pesquisa ZTF varre todo o céu do norte a cada duas noites usando uma câmera CCD de campo excepcionalmente amplo no telescópio Samuel Oschin de 48 polegadas no Observatório Palomar. Entre suas presas estão asteroides próximos da Terra, milhares de supernovas (6.600 classificadas até o momento) e numerosos cometas, incluindo estes dois objetos em destaque. Ambos estão aumentando o brilho lentamente e irão enfeitar os céus por meses, tornando-os objetos ideais para observar suas evoluções. 

O cometa C/2020 V2 ZTF ainda paira em torno da magnitude 10,5 à medida que avança para o norte na direção daestrela Polaris a uma taxa atual de cerca de 0,5° por dia. Neste mês de novembro, o cometa fica a cerca de 20° de altura ao anoitecer para observadores nas latitudes do meio do norte e é circumpolar para grande parte dos EUA e da Europa. A altitude máxima ocorre pouco antes do amanhecer. Um telescópio de 8 polegadas ou maior sob céus sem lua deve fornecer uma boa visão deste compacto chumaço de algodão. 

O C/2020 V2 ZTF aumenta lentamente para uma magnitude máxima de cerca de 9,0 a 9,5 no final de janeiro, onde estará situado a oeste do brilhante aglomerado aberto M103 em Cassiopeia, e novamente no final de agosto e início de setembro durante sua aproximação mais próxima da Terra em 17 de setembro, 2023. O seu periélio será no dia 8 de maio de 2023.

O cometa C/2022 E3 ZTF deve se tornar uma ordem de magnitude mais espetacular do que seu sósia homônimo. Ficando parado por enquanto no norte de Serpens, perto da fronteira de Corona Borealis, este pequeno cometa fortemente condensado brilha em torno de magnitude 9,8. Ele possui a aparência característica de um cometa com um núcleo brilhante e uma cauda minúscula em forma de leque. Agora ele está na magnitude 10, a coma com cerca de 1,5' e uma cauda de 3' apontando para o leste. 

Em 1º de janeiro, o cometa C/2022 E3 ZTF acelera rapidamente, cruzando de Corona Borealis para Boötes, Draco e Ursa Menor enquanto aumenta de magnitude 8 para 5 a 5,5 no final deste mês. Durante a terceira semana de janeiro, torna-se circumpolar para os observadores da latitude norte e passa cerca de 10° a sudeste de Polaris em 29 de janeiro. Na noite de 10 para 11 de fevereiro, ele faz uma visita a Marte. O periélio desta bola de neve cósmica ocorre em 12 de janeiro a 1,1 UA (unidades astronômicas) e a aproximação mais próxima da Terra em 1º de fevereiro a 0,29 UA. Com um pico de magnitude 5 no final de janeiro e início de fevereiro, deve ser um belo objeto binocular e provavelmente visível a olho nu em céus escuros e sem Lua.

Fonte: Sky & Telescope

sábado, 12 de novembro de 2022

Cometas e o Sistema Solar

Um novo estudo da Universidade da Flórida Central descobriu fortes evidências de que a emissão de moléculas dos cometas pode ser o resultado da composição do início do nosso Sistema Solar.

© NASA / WISE (cometa 65P/Gunn)

O estudo foi liderado por Olga Harrington Pinto, do Departamento de Física da mesma universidade. A medição da proporção de certas moléculas presentes após a emissão de gases dos cometas pode fornecer conhecimentos sobre a composição química dos primeiros sistemas solares e do processamento físico dos cometas após a sua formação. A liberação de gases ocorre quando os cometas, que são pequenos corpos de poeira, rocha e gelo no Sistema Solar, aquecem. 

Como parte da sua pesquisa, Harrington Pinto compilou as quantidades de água, dióxido de carbono e monóxido de carbono de 25 cometas para testar as previsões da formação e evolução do Sistema Solar. Isto permitiu o estudo de quase o dobro dos dados de monóxido de carbono e dióxido de carbono cometários. As medições vieram de uma variedade de publicações científicas. Ela combinou cuidadosamente os dados obtidos com diferentes telescópios e diferentes equipes de observação quando as medições eram simultâneas e pôde confirmar que os dados estavam todos bem calibrados.

Um dos resultados mais interessantes é que cometas muito longe do Sol com órbitas na nuvem de Oort que nunca, ou só raramente, orbitaram perto do Sol, foram vistos produzindo mais CO2 do que CO na sua coma, enquanto que cometas que fizeram muitas mais viagens perto do Sol comportam-se de forma oposta. Isto nunca tinha sido visto de forma conclusiva antes. 

Curiosamente, os dados são consistentes com as previsões de que os cometas que têm permanecido muito longe do Sol, na nuvem de Oort, podem ter sido bombardeados por raios cósmicos na sua superfície de tal forma que criaram uma camada externa pobre em CO. Depois da sua primeira ou segunda viagem perto do Sol, esta camada exterior processada é arrancada pelo Sol, revelando uma composição muito mais pura, que libera muito mais CO. 

A pesquisadora diz que o próximo passo do trabalho é analisar as primeiras observações de centauros que a sua equipe fez com o telescópio espacial James Webb a fim de medir diretamente o monóxido de carbono e dióxido de carbono e assim comparar os resultados com este estudo.

Os resultados foram publicados na revista The Planetary Science Journal

Fonte: University of Central Florida

quarta-feira, 20 de abril de 2022

O cometa com maior núcleo

O telescópio espacial Hubble determinou o tamanho do maior núcleo gelado de um cometa alguma vez visto.

© STScI/Hubble (cometa Bernardinelli-Bernstein)

Esta sequência mostra como o núcleo do cometa C/2014 UN271 (Bernardinelli-Bernstein) foi isolado de uma vasta concha de poeira e gás que rodeava o núcleo sólido gelado. À esquerda encontra-se uma fotografia do cometa tirada pelo instrumento WFC3 (Wide Field Camera 3) do telescópio espacial Hubble, em 8 de janeiro de 2022. Um modelo da coma (painel central) foi obtido através do encaixe do perfil de brilho da superfície com a imagem observada à esquerda. Isto permitiu que a coma fosse subtraída, desvendando o brilho pontiagudo do núcleo. Em combinação com dados de radiotelescópios, os astrônomos chegaram a uma medição precisa do tamanho do núcleo. É uma pequena proeza para algo a cerca de 3,2 bilhões de quilômetros de distância. Embora se estime que o núcleo tenha até 137 quilômetros de diâmetro, está tão longe que não pode ser resolvido pelo Hubble. O seu tamanho deriva da sua refletividade tal como medida por Hubble. Estima-se que o núcleo seja tão escuro como o carvão. A área do núcleo foi recolhida a partir de observações de rádio. 

O núcleo é cerca de 50 vezes maior do que o encontrado no coração da maioria dos cometas conhecidos. A sua massa está estimada em 500 trilhões de toneladas, cem mil vezes maior do que a massa de um cometa típico encontrado muito mais próximo do Sol.

O cometa gigante, C/2014 UN271 (Bernardinelli-Bernstein), está se dirigindo na direção do Sol a 35.400 quilômetros por hora desde a orla do Sistema Solar. Ele nunca se aproximará mais do que 1,6 bilhões de quilômetros do Sol, ligeiramente mais do que a distância do planeta Saturno. E isso só será no ano 2031. 

O recordista anterior de maior cometa conhecido é C/2002 VQ94, com um núcleo estimado em torno de 97 quilômetros. Foi descoberto em 2002 pelo projeto LINEAR (Lincoln Near-Earth Asteroid Research).

© STScI (comparação de núcleos cometários)

O cometa C/2014 UN271 foi descoberto pelos astrónomos Pedro Bernardinelli e Gary Bernstein em imagens de arquivo do DES (Dark Energy Survey) no Observatório Interamericano de Cerro Tololo, Chile. Foi observado pela primeira vez apenas por acaso em novembro de 2010, quando se encontrava a uns impressionantes 4,8 bilhões de quilômetros do Sol, mais do que a distância média que separa Netuno do Sol. Desde então, tem sido intensivamente estudado por telescópios terrestres e espaciais.

O cometa vem se aproximando do Sol há mais de 1 milhão de anos. Sua origem é do repositório que contêm trilhões de cometas, chamado Nuvem de Oort. Pensa-se que a nuvem difusa tenha uma orla interior 2.000 a 5.000 vezes a distância entre a Terra e o Sol. A sua orla exterior pode estender-se pelo menos a um-quarto da distância às estrelas mais próximas do nosso Sol, no sistema Alpha Centauri. Os cometas da Nuvem de Oort não se formaram tão longe do Sol; em vez disso, foram atirados para fora do Sistema Solar há bilhões de anospela ação gravitacional entre os massivos planetas exteriores, quando as órbitas de Júpiter e Saturno ainda estavam evoluindo. 

Os longínquos cometas só regressam ao Sol e aos planetas se as suas órbitas distantes forem perturbadas pela atração gravitacional de uma estrela passageira. O cometa Bernardinelli-Bernstein segue uma órbita elíptica de 3 milhões de anos, levando-o para tão longe do Sol quanto cerca de meio ano-luz. O cometa está agora a menos de 3,2 bilhões de quilômetros do Sol, trafegando quase perpendicularmente ao plano do nosso Sistema Solar. A esta distância, as temperaturas são apenas de -211 ºC. No entanto, é suficientemente quente para o monóxido de carbono se sublimar a partir da superfície para produzir a coma empoeirada.

O cometa Bernardinelli-Bernstein fornece uma pista inestimável para a distribuição do tamanho dos cometas na Nuvem de Oort e, consequentemente, da sua massa total. As estimativas da massa da Nuvem de Oort variam muito, chegando a atingir 20 vezes a massa da Terra. Teorizada pela primeira vez em 1950 pelo astrônomo holandês Jan Oort, a Nuvem de Oort continua sendo uma hipótese porque os inúmeros cometas que a compõem são demasiado tênues e distantes para serem diretamente observados. Ironicamente, isto significa que a maior estrutura do Sistema Solar é praticamente invisível. 

Estima-se que o par de naves espaciais Voyager da NASA só chegue ao reino interior da Nuvem de Oort daqui a 300 anos, e que possa demorar até 30.000 anos a atravessá-la. As evidências circunstanciais provêm de cometas em queda que podem ser rastreados até este local de nidificação. Aproximam-se do Sol de todas as diferentes direções, o que significa que a nuvem deve ter uma forma esférica.

Estes cometas são amostras pristinas da composição do Sistema Solar primitivo, preservadas durante bilhões de anos. A realidade da Nuvem de Oort é reforçada pela modelagem teórica da formação e evolução do Sistema Solar. Quanto mais evidências observacionais puderem ser recolhidas através de levantamentos do céu profundo, juntamente com observações em vários comprimentos de onda, melhor pode ser compreendida a função da Nuvem de Oort na evolução do Sistema Solar.

Um novo estudo sobre o cometa foi publicado no periódico The Astrophysical Journal Letters.

Fonte: Space Telescope Science Institute

sábado, 1 de janeiro de 2022

As cabeleiras dos cometas

De vez em quando, o Cinturão de Kuiper e a Nuvem de Oort lançam cometas compostos de gelo, poeira e rocha na nossa direção: remanescentes da formação do Sistema Solar com 4,6 bilhões de anos.

© Michael Jäger (cometa Leonard)

Estes cometas passam por uma metamorfose colorida ao cruzarem o céu, e muitos núcleos ganham uma coma (cabeleira) esverdeada que fica mais brilhante à medida que se aproximam do Sol. Mas, estranhamente, este tom de cor desaparece antes de alcançar a cauda (ou as duas caudas - iônica e de poeira) que fica para trás do cometa. 

Os astrônomos há quase um século que querem resolver este mistério. Na década de 1930, o físico Gerhard Herzeberg teorizou que o fenômeno se devia à luz solar que destruía o carbono diatômico (C2), uma substância química criada a partir da interação entre a luz solar e a matéria orgânica no núcleo do cometa; mas, dado que o C2 não é estável, esta teoria tem sido difícil de testar. Herzberg foi um físico incrível que ganhou o Prêmio Nobel da Química na década de 1970.

Um novo estudo, liderado pela Universidade de Nova Gales do Sul em Sydney, Austrália, encontrou finalmente uma forma de testar esta reação química num laboratório, e provando que a teoria está correta. Isto explica porque é que a cabeleira esverdeada, a camada difusa de gás e poeira que rodeia o núcleo, encolhe à medida que um cometa se aproxima do Sol, e também porque é que a cauda do cometa não é verde.

O elemento principal no centro do mistério, o C2, é altamente reativo e responsável por dar a muitos cometas a sua cor verde. É composto por dois átomos de carbono ligados entre si e só pode ser encontrado em ambientes extremamente energéticos ou com pouco oxigênio, como estrelas, cometas e no meio interestelar. 

O C2 não existe nos cometas até que estes se aproximam do Sol. À medida que o Sol começa a aquecer o cometa, a matéria orgânica presente no núcleo gelado evapora e passa para a cabeleira. A luz solar decompõe então estas moléculas orgânicas maiores, criando o C2. À medida que o cometa se aproxima cada vez mais do Sol, a radiação ultravioleta extrema parte as moléculas de C2 que recentemente criou, num processo chamado "fotodissociação". Este processo destrói o C2 antes de se poder afastar para longe do núcleo, tornando a cabeleira verde ainda mais brilhante e encolhendo-a, e também se certificando de que o tom verde nunca chega à cauda. É a primeira vez que esta interação química foi estudada aqui na Terra. 

Para resolver este processo químico galáctico, a equipe precisava recriá-lo num ambiente controlado na Terra. Conseguiram isto com a ajuda de uma câmara de vácuo, muitos lasers e uma poderosa reação cósmica. Foi utilizada a molécula percloroetileno (C2Cl4), e expelindo os seus átomos de cloro (Cl) com um laser ultravioleta (UV) de alta potência. As recém-produzidas moléculas de C2 foram enviadas através de um feixe de gás numa câmara de vácuo, que tinha cerca de dois metros de comprimento. 

A equipa então apontou outros dois lasers UV para o C2: um para o inundar de radiação, o outro para tornar os seus átomos detectáveis. O impacto da radiação "rasgou" o C2, enviando os seus átomos de carbono contra um detector de velocidade. Através da análise da velocidade destes velozes átomos, a equipe conseguiu medir a força da ligação de carbono a cerca de um em cada 20.000, o que é como medir 200 metros até ao centímetro mais próximo. 

Existem cerca de 3.700 cometas conhecidos no Sistema Solar, embora se suspeite que possam haver bilhões. Em média, o núcleo de um cometa tem um tamanho de 10 quilômetros, mas a sua cabeleira é frequentemente 1.000 vezes maior. 

Os cometas brilhantes podem dar espetáculos celestes àqueles que têm a sorte de os ver. Mas, no passado, os cometas podem ter feito mais do que isso pela Terra, de fato, uma das teorias sobre a origem da vida diz que os cometas entregaram os blocos de construção da vida mesmo à nossa porta.

Agora, os astrônomos pretendem investigar bandas interestelares difusas: padrões de linhas escuras entre estrelas que não correspondem a nenhum átomo ou molécula que conhecemos. As bandas interestelares difusas são um grande mistério não resolvido.

O novo estudo foi publicado no periódico Proceedings of the National Academy of Sciences.

Fonte: University of New South Wales