sábado, 1 de janeiro de 2022

As cabeleiras dos cometas

De vez em quando, o Cinturão de Kuiper e a Nuvem de Oort lançam cometas compostos de gelo, poeira e rocha na nossa direção: remanescentes da formação do Sistema Solar com 4,6 bilhões de anos.

© Michael Jäger (cometa Leonard)

Estes cometas passam por uma metamorfose colorida ao cruzarem o céu, e muitos núcleos ganham uma coma (cabeleira) esverdeada que fica mais brilhante à medida que se aproximam do Sol. Mas, estranhamente, este tom de cor desaparece antes de alcançar a cauda (ou as duas caudas - iônica e de poeira) que fica para trás do cometa. 

Os astrônomos há quase um século que querem resolver este mistério. Na década de 1930, o físico Gerhard Herzeberg teorizou que o fenômeno se devia à luz solar que destruía o carbono diatômico (C2), uma substância química criada a partir da interação entre a luz solar e a matéria orgânica no núcleo do cometa; mas, dado que o C2 não é estável, esta teoria tem sido difícil de testar. Herzberg foi um físico incrível que ganhou o Prêmio Nobel da Química na década de 1970.

Um novo estudo, liderado pela Universidade de Nova Gales do Sul em Sydney, Austrália, encontrou finalmente uma forma de testar esta reação química num laboratório, e provando que a teoria está correta. Isto explica porque é que a cabeleira esverdeada, a camada difusa de gás e poeira que rodeia o núcleo, encolhe à medida que um cometa se aproxima do Sol, e também porque é que a cauda do cometa não é verde.

O elemento principal no centro do mistério, o C2, é altamente reativo e responsável por dar a muitos cometas a sua cor verde. É composto por dois átomos de carbono ligados entre si e só pode ser encontrado em ambientes extremamente energéticos ou com pouco oxigênio, como estrelas, cometas e no meio interestelar. 

O C2 não existe nos cometas até que estes se aproximam do Sol. À medida que o Sol começa a aquecer o cometa, a matéria orgânica presente no núcleo gelado evapora e passa para a cabeleira. A luz solar decompõe então estas moléculas orgânicas maiores, criando o C2. À medida que o cometa se aproxima cada vez mais do Sol, a radiação ultravioleta extrema parte as moléculas de C2 que recentemente criou, num processo chamado "fotodissociação". Este processo destrói o C2 antes de se poder afastar para longe do núcleo, tornando a cabeleira verde ainda mais brilhante e encolhendo-a, e também se certificando de que o tom verde nunca chega à cauda. É a primeira vez que esta interação química foi estudada aqui na Terra. 

Para resolver este processo químico galáctico, a equipe precisava recriá-lo num ambiente controlado na Terra. Conseguiram isto com a ajuda de uma câmara de vácuo, muitos lasers e uma poderosa reação cósmica. Foi utilizada a molécula percloroetileno (C2Cl4), e expelindo os seus átomos de cloro (Cl) com um laser ultravioleta (UV) de alta potência. As recém-produzidas moléculas de C2 foram enviadas através de um feixe de gás numa câmara de vácuo, que tinha cerca de dois metros de comprimento. 

A equipa então apontou outros dois lasers UV para o C2: um para o inundar de radiação, o outro para tornar os seus átomos detectáveis. O impacto da radiação "rasgou" o C2, enviando os seus átomos de carbono contra um detector de velocidade. Através da análise da velocidade destes velozes átomos, a equipe conseguiu medir a força da ligação de carbono a cerca de um em cada 20.000, o que é como medir 200 metros até ao centímetro mais próximo. 

Existem cerca de 3.700 cometas conhecidos no Sistema Solar, embora se suspeite que possam haver bilhões. Em média, o núcleo de um cometa tem um tamanho de 10 quilômetros, mas a sua cabeleira é frequentemente 1.000 vezes maior. 

Os cometas brilhantes podem dar espetáculos celestes àqueles que têm a sorte de os ver. Mas, no passado, os cometas podem ter feito mais do que isso pela Terra, de fato, uma das teorias sobre a origem da vida diz que os cometas entregaram os blocos de construção da vida mesmo à nossa porta.

Agora, os astrônomos pretendem investigar bandas interestelares difusas: padrões de linhas escuras entre estrelas que não correspondem a nenhum átomo ou molécula que conhecemos. As bandas interestelares difusas são um grande mistério não resolvido.

O novo estudo foi publicado no periódico Proceedings of the National Academy of Sciences.

Fonte: University of New South Wales

Nenhum comentário: