A desafiante descoberta, pela missão Rosetta da ESA, de vários isótopos de gás nobre xenônio no cometa 67P/Churyumov-Gerasimenko estabeleceu o primeiro elo quantitativo entre o cometa e a atmosfera da Terra.
© ESA/Rosetta (cometa 67P/Churyumov-Gerasimenko)
A mistura de xenônio encontrada no cometa é muito parecida com U-xenônio, a mistura primordial que os cientistas acreditam ter sido trazida para a Terra durante os estágios iniciais da formação do Sistema Solar. Estas medições sugerem que os cometas contribuíram com cerca de um-quinto da quantidade de xenônio na antiga atmosfera da Terra.
O xenônio é um gás incolor e inodoro que compõe menos de um bilionésimo do volume da atmosfera da Terra e pode conter a chave para responder a uma pergunta de longa data sobre os cometas: contribuíram estes para a transferência de material para o nosso planeta quando o Sistema Solar estava se formando, há cerca de 4,6 bilhões de anos atrás? E, em caso afirmativo, quanto?
O gás nobre xenônio é formado numa variedade de processos estelares, desde as fases tardias de estrelas de massa baixa e intermediária, até explosões de supernovas, e até fusões de estrelas de nêutrons. Cada um destes fenômenos dá origem a diferentes isótopos do elemento. Os isótopos mais leves do xenônio (124Xe and 126Xe) são produzidos durante explosões de supernova, os isótopos de massa intermediária (127Xe, 128Xe, 129Xe, 130Xe, 131Xe and 132Xe) são produzidos durante a fase do Ramo Gigante Assintótico de estrelas de massa baixa e intermediária evoluídas e os isótopos mais pesados (134Xe and 136Xe) são produzidos durante a fusão de estrelas de nêutrons. O Ramo Gigante Assimtótico é uma região do diagrama de Hertzsprung-Russell, populado por estrelas de massa baixa e moderadas. Este é um período de evolução estelar que ocorre em todas as estrelas entre 0,6 a 10 massas solares, no fim de sua vida. Como um gás nobre, o xenônio não interage com outras espécies químicas e, portanto, é um importante vestígio do material a partir do qual o Sol e os planetas se originaram e que, por sua vez, deriva de gerações de estrelas anteriores.
"O xenônio é o gás nobre estável mais pesado e, talvez, o mais importante por causa dos seus muitos isótopos que se originam em diferentes processos estelares: cada um fornece uma informação adicional sobre as nossas origens cósmicas," diz Bernard Marty da CRPG-CNRS e Universidade de Lorraine, França.
É por causa desta "impressão digital" especial que os cientistas têm usado o xenônio para investigar a composição do Sistema Solar inicial, que fornece pistas importantes para compelir a sua formação. Ao longo das últimas décadas, recolheram amostras da abundância relativa dos seus vários isótopos em diferentes locais: na atmosfera da Terra e de Marte, nos meteoritos provenientes de asteroides, em Júpiter e no vento solar, o fluxo de partículas carregadas que fluem do Sol.
A mistura de xenônio presente na atmosfera do nosso planeta contém uma maior abundância de isótopos mais pesados em relação aos mais leves; no entanto, isto resulta dos elementos mais leves escaparem mais facilmente da atração gravitacional da Terra e sendo perdidos para o espaço em maiores quantidades. Ao corrigir a composição atmosférica do xenônio para este efeito desenfreado, os cientistas na década de 1970 calcularam a composição da mistura primordial deste gás nobre, conhecido como U-xenônio, que já estava presente na Terra.
Este U-xenônio continha uma mistura de isótopos leves similar à dos asteroides e do vento solar, mas incluiu quantidades significativamente menores dos isótopos mais pesados.
"Por estas razões, há muito que suspeitamos que o xenônio na atmosfera inicial da Terra poderia ter uma origem diferente da mistura média deste gás nobre encontrado no Sistema Solar," diz Bernard.
Uma das explicações é que o xenônio no Sistema Solar deriva diretamente da nuvem protossolar, uma massa de gás e poeira que deu origem ao Sol e aos planetas, enquanto o xenônio encontrado na atmosfera terrestre foi entregue num estágio posterior por cometas que, por sua vez, se podem ter formado a partir de uma mistura de material diferente.
Com a visita da missão Rosetta da ESA ao cometa 67P/Churyumov-Gerasimenko, um fóssil gelado do Sistema Solar inicial, os cientistas poderiam finalmente reunir os dados, há muito procurados, para testar esta hipótese.
O xenônio é muito difuso na atmosfera fina do cometa, então foi necessário aproximar a Rosetta do cometa, entre 5 a 8 km da superfície do núcleo, por um período de três semanas, para que o ROSINA, o espectrômetro da sonda Rosetta para análise de íons e nêutrons, pudesse obter uma detecção significativa de todos os isótopos relevantes.
Voar tão perto do cometa foi extremamente difícil, por causa da grande quantidade de poeira que se levantava à superfície, o que poderia confundir os rastreadores de estrelas que eram usados para orientar a nave espacial.
Eventualmente, a equipe da Rosetta decidiu realizar esta operação na segunda metade de maio de 2016. Este período foi escolhido, de modo que teria passado o tempo suficiente após o periélio do cometa, em agosto de 2015, e para que a atividade de poeira se tornasse menos intensa, mas não demasiado de modo que a atmosfera fosse excessivamente fina e a presença de xenônio ficasse difícil de ser detectado.
Como resultado das observações, o ROSINA identificou sete isótopos de xenônio, bem como vários isótopos de outro gás nobre, o criptônio; elevando assim para três o inventário de gases nobres encontrados no cometa da Rosetta, após a descoberta de argônio, a partir de medições realizadas no final de 2014.
Uma análise mais aprofundada dos dados revelou que a mistura de xenônio no cometa 67P/Churyumov-Gerasimenko, que contém quantidades maiores de isótopos leves do que pesados, é bastante diferente da mistura média encontrada no Sistema Solar. Uma comparação com a amostra de calibração a bordo confirmou que o xenônio detectado no cometa também é diferente da mistura atual na atmosfera da Terra.
Em contraste, a composição do xenônio detectada no cometa parece estar mais próxima da composição que os cientistas pensam estar presente na atmosfera inicial da Terra.
Existem algumas discrepâncias entre as duas composições, que indicam que o xenônio primordial fornecido ao nosso planeta, poderia derivar de uma combinação de cometas e asteroides impactantes.
Em particular, os pesquisadores conseguiram estabelecer o primeiro elo quantitativo entre os cometas e a camada gasosa do planeta: com base nas medições da Rosetta no cometa 67P/Churyumov-Gerasimenko, 22% do xenônio, outrora presente na atmosfera da Terra, pode ser originário de cometas, o resto terá sido fornecido por asteroides.
Este resultado não está em contradição com as medições isotópicas da água no cometa da Rosetta, que eram significativamente diferentes daquelas encontradas na Terra. De fato, considerando os vestígios de xenônio na atmosfera da Terra e a quantidade de água muito maior nos oceanos, os cometas poderiam ter contribuído para o xenônio atmosférico sem ter um impacto significativo na composição da água nos oceanos.
A contribuição deduzida das medições de xenônio, por outro lado, concorda com a possibilidade de que os cometas tenham sido transportadores significativos de material pré-biótico, como o fósforo e o aminoácido glicina, que também foram detectados pela Rosetta no cometa, que foi crucial para o aparecimento da vida na Terra.
Finalmente, a diferença entre a mistura de xenônio encontrado no cometa, que foi incorporado no núcleo no momento da sua formação, e o xenônio observado por todo o Sistema Solar indica que a nuvem protossolar, a partir da qual o Sol, os planetas e pequenos corpos nasceram, era um lugar bastante heterogêneo em termos da sua composição química.
"Esta conclusão está de acordo com medições anteriores realizadas pela Rosetta, incluindo as deteções inesperadas de oxigênio molecular (O2) e di-enxofre (S2), e a alta relação deutério-hidrogênio observada na água do cometa," diz Kathrin Altwegg, da Universidade de Berna, Suíça, pesquisadora principal do ROSINA.
A evidência adicional da natureza não homogênea da nuvem protossolar veio também de um outro estudo baseado em observações do ROSINA, publicado em maio na Astronomy & Astrophysics, e que revelou que a mistura de isótopos de silício observados no cometa é diferente daquela medida em outro local no Solar Sistema.
Um artigo que relata a descoberta de xenônio pela sonda Rosetta no cometa 67P/Churyumov-Gerasimenko foi publicado na revista Science.
Fonte: ESA
Nenhum comentário:
Postar um comentário